Scaling constraints in nanoelectronic random-access memories

被引:72
作者
Amsinck, CJ [1 ]
Di Spigna, NH [1 ]
Nackashi, DP [1 ]
Franzon, PD [1 ]
机构
[1] N Carolina State Univ, Raleigh, NC 27695 USA
关键词
D O I
10.1088/0957-4484/16/10/047
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoelectronic molecular and magnetic tunnel junction (MTJ) MRAM crossbar memory systems have the potential to present significant area advantages (4 to 6F(2)) compared to CMOS-based systems. The scalability of these conductivity-switched RAM arrays is examined by establishing criteria for correct functionality based on the readout margin. Using a combined circuit theoretical modelling and simulation approach, the impact of both the device and interconnect architecture on the scalability of a conductivity-state memory system is quantified. This establishes criteria showing the conditions and on/off ratios for the large-scale integration of molecular devices, guiding molecular device design. With 10% readout margin on the resistive load, a memory device needs to have an on/off ratio of at least 7 to be integrated into a 64 x 64 array, while an on/off ratio of 43 is necessary to scale the memory to 512 x 512.
引用
收藏
页码:2251 / 2260
页数:10
相关论文
共 22 条
[1]   Large conductance switching and memory effects in organic molecules for data-storage applications [J].
Bandyopadhyay, A ;
Pal, AJ .
APPLIED PHYSICS LETTERS, 2003, 82 (08) :1215-1217
[2]   Comparing the conductivity of molecular wires with the scanning tunneling microscope [J].
Blum, AS ;
Yang, JC ;
Shashidhar, R ;
Ratna, B .
APPLIED PHYSICS LETTERS, 2003, 82 (19) :3322-3324
[3]   Large on-off ratios and negative differential resistance in a molecular electronic device [J].
Chen, J ;
Reed, MA ;
Rawlett, AM ;
Tour, JM .
SCIENCE, 1999, 286 (5444) :1550-1552
[4]   Nanoscale molecular-switch crossbar circuits [J].
Chen, Y ;
Jung, GY ;
Ohlberg, DAA ;
Li, XM ;
Stewart, DR ;
Jeppesen, JO ;
Nielsen, KA ;
Stoddart, JF ;
Williams, RS .
NANOTECHNOLOGY, 2003, 14 (04) :462-468
[5]   Nanoscale molecular-switch devices fabricated by imprint lithography [J].
Chen, Y ;
Ohlberg, DAA ;
Li, XM ;
Stewart, DR ;
Williams, RS ;
Jeppesen, JO ;
Nielsen, KA ;
Stoddart, JF ;
Olynick, DL ;
Anderson, E .
APPLIED PHYSICS LETTERS, 2003, 82 (10) :1610-1612
[6]   Electronically configurable molecular-based logic gates [J].
Collier, CP ;
Wong, EW ;
Belohradsky, M ;
Raymo, FM ;
Stoddart, JF ;
Kuekes, PJ ;
Williams, RS ;
Heath, JR .
SCIENCE, 1999, 285 (5426) :391-394
[7]   A high-speed 128-kb MRAM core for future universal memory applications [J].
DeBrosse, J ;
Gogl, D ;
Bette, A ;
Hoenigschmid, H ;
Robertazzi, R ;
Arndt, C ;
Braun, D ;
Casarotto, D ;
Havreluk, R ;
Lammers, S ;
Obermaier, W ;
Reohr, WR ;
Viehmann, H ;
Gallagher, WJ ;
Müller, G .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (04) :678-683
[8]   Device scaling limits of Si MOSFETs and their application dependencies [J].
Frank, DJ ;
Dennard, RH ;
Nowak, E ;
Solomon, PM ;
Taur, Y ;
Wong, HSP .
PROCEEDINGS OF THE IEEE, 2001, 89 (03) :259-288
[9]   On-chip error correcting techniques for new-generation Flash memories [J].
Gregori, S ;
Cabrini, A ;
Khouri, O ;
Torelli, G .
PROCEEDINGS OF THE IEEE, 2003, 91 (04) :602-616
[10]   Extending the road beyond CMOS [J].
Hutchby, JA ;
Bourianoff, GI ;
Zhirnov, VV ;
Brewer, JE .
IEEE CIRCUITS & DEVICES, 2002, 18 (02) :28-41