Band-structure-corrected local density approximation study of semiconductor quantum dots and wires

被引:234
作者
Li, JB [1 ]
Wang, LW [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA
关键词
D O I
10.1103/PhysRevB.72.125325
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents results of ab initio accuracy thousand atom calculations of colloidal quantum dots and wires using the charge patching method. We have used density functional theory under local density approximation (LDA), and we have corrected the LDA bulk band structures by modifying the nonlocal pseudopotentials, so that their effective masses agree with experimental values. We have systematically studied the electronic states of group III-V (GaAs, InAs, InP, GaN, AlN, and InN) and group II-VI (CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, and ZnO) systems. We have also calculated the electron-hole Coulomb interactions in these systems. We report the exciton energies as functions of the quantum dot sizes and quantum wire diameters for all the above materials. We found generally good agreements between our calculated results and experimental measurements. For CdSe and InP, the currently calculated results agree well with the previously calculated results using semiempirical pseudopotentials. The ratios of band-gap-increases between quantum wires and dots are material-dependent, but a majority of them are close to 0.586, as predicted by the simple effective-mass model. Finally, the size dependence of 1S(e)-1P(e) transition energies of CdSe quantum dots agrees well with the experiment. Our results can be used as benchmarks for future experiments and calculations.
引用
收藏
页数:15
相关论文
共 116 条
[1]   Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well [J].
Achermann, M ;
Petruska, MA ;
Kos, S ;
Smith, DL ;
Koleske, DD ;
Klimov, VI .
NATURE, 2004, 429 (6992) :642-646
[2]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[3]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[4]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[5]   Quantum confinement energies in zinc-blende III-V and group IV semiconductors [J].
Allan, G ;
Niquet, YM ;
Delerue, C .
APPLIED PHYSICS LETTERS, 2000, 77 (05) :639-641
[6]   Energy levels of nitride quantum dots: Wurtzite versus zinc-blende structure [J].
Bagga, A ;
Chattopadhyay, PK ;
Ghosh, S .
PHYSICAL REVIEW B, 2003, 68 (15)
[7]   Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory [J].
Banin, U ;
Lee, CJ ;
Guzelian, AA ;
Kadavanich, AV ;
Alivisatos, AP ;
Jaskolski, W ;
Bryant, GW ;
Efros, AL ;
Rosen, M .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (06) :2306-2309
[8]   Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots [J].
Banin, U ;
Cao, YW ;
Katz, D ;
Millo, O .
NATURE, 1999, 400 (6744) :542-544
[9]   Indium nitride (InN): A review on growth, characterization, and properties [J].
Bhuiyan, AG ;
Hashimoto, A ;
Yamamoto, A .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (05) :2779-2808
[10]   Indium nitride quantum dots grown by metalorganic vapor phase epitaxy [J].
Briot, O ;
Maleyre, B ;
Ruffenach, S .
APPLIED PHYSICS LETTERS, 2003, 83 (14) :2919-2921