Identification of metabolic network models from incomplete high-throughput datasets

被引:17
作者
Berthoumieux, Sara [1 ]
Brilli, Matteo [1 ,2 ]
de Jong, Hidde [1 ]
Kahn, Daniel [2 ]
Cinquemani, Eugenio [1 ]
机构
[1] INRIA Grenoble Rhone Alpes, Montbonnot St Martin, France
[2] Univ Lyon 1, CNRS, INRA, Lab Biometrie & Biol Evolut,UMR 5558, F-69622 Villeurbanne, France
关键词
ESCHERICHIA-COLI; IDENTIFIABILITY ANALYSIS; REDESIGN;
D O I
10.1093/bioinformatics/btr225
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-throughput measurement techniques for metabolism and gene expression provide a wealth of information for the identification of metabolic network models. Yet, missing observations scattered over the dataset restrict the number of effectively available datapoints and make classical regression techniques inaccurate or inapplicable. Thorough exploitation of the data by identification techniques that explicitly cope with missing observations is therefore of major importance. Results: We develop a maximum-likelihood approach for the estimation of unknown parameters of metabolic network models that relies on the integration of statistical priors to compensate for the missing data. In the context of the linlog metabolic modeling framework, we implement the identification method by an Expectation-Maximization (EM) algorithm and by a simpler direct numerical optimization method. We evaluate performance of our methods by comparison to existing approaches, and show that our EM method provides the best results over a variety of simulated scenarios. We then apply the EM algorithm to a real problem, the identification of a model for the Escherichia coli central carbon metabolism, based on challenging experimental data from the literature. This leads to promising results and allows us to highlight critical identification issues.
引用
收藏
页码:I186 / I195
页数:10
相关论文
共 35 条
[1]  
[Anonymous], 1991, ELEMENTS INFORM THEO, DOI [DOI 10.1002/0471200611, 10.1002/0471200611]
[2]   Systems biology: parameter estimation for biochemical models [J].
Ashyraliyev, Maksat ;
Fomekong-Nanfack, Yves ;
Kaandorp, Jaap A. ;
Blom, Joke G. .
FEBS JOURNAL, 2009, 276 (04) :886-902
[3]   A quantitative approach to catabolite repression in Escherichia coli [J].
Bettenbrock, K ;
Fischer, S ;
Kremling, A ;
Jahreis, K ;
Sauter, T ;
Gilles, ED .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (05) :2578-2584
[4]  
Brand M, 2002, LECT NOTES COMPUT SC, V2350, P707
[5]   Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations [J].
Costa, Rafael S. ;
Machado, Daniel ;
Rocha, Isabel ;
Ferreira, Eugenio C. .
BIOSYSTEMS, 2010, 100 (02) :150-157
[6]  
Crampin E, 2006, P 14 IFAC S SYST ID, P81
[7]   Challenges in lin-log modelling of glycolysis in Lactococcus lactis [J].
del Rosario, R. C. H. ;
Mendoza, E. ;
Voit, E. O. .
IET SYSTEMS BIOLOGY, 2008, 2 (03) :136-U30
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]   Missing Data Analysis: Making It Work in the Real World [J].
Graham, John W. .
ANNUAL REVIEW OF PSYCHOLOGY, 2009, 60 :549-576
[10]   Translating biochemical network models between different kinetic formats [J].
Hadlich, Frieder ;
Noack, Stephan ;
Wiechert, Wolfgang .
METABOLIC ENGINEERING, 2009, 11 (02) :87-100