Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism

被引:37
作者
Astakhov, V
Shabunin, A
Uhm, W
Kim, S
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Saratov 410071, Russia
[2] Pohang Univ Sci & Technol, Dept Phys, NRL, Nonlinear & Complex Syst Lab, Pohang 790784, South Korea
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.056212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate phenomena of multistability and complete chaos synchronization in coupled Henon maps, which is an invertible system. Multiparametric analysis of a selected family of periodic orbits for coupled Henon maps shows that a single bifurcational mechanism describes both a loss of chaos Synchronization and multistability formation. The process of bubbling transition and riddle basins, and the multistability formation in invertible systems are described in detail.
引用
收藏
页数:9
相关论文
共 13 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]  
Anishchenko V. S., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P633, DOI 10.1142/S0218127492000756
[3]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[4]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[5]   Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits [J].
Astakhov, V ;
Shabunin, A ;
Kapitaniak, T ;
Anishchenko, V .
PHYSICAL REVIEW LETTERS, 1997, 79 (06) :1014-1017
[6]   Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems [J].
Astakhov, V ;
Hasler, M ;
Kapitaniak, T ;
Shabunin, A ;
Anishchenko, V .
PHYSICAL REVIEW E, 1998, 58 (05) :5620-5628
[7]  
ASTAKHOV VV, 1990, ZH TEKH FIZ+, V60, P19
[8]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[9]   Riddling bifurcation in chaotic dynamical systems [J].
Lai, YC ;
Grebogi, C ;
Yorke, JA ;
Venkataramani, SC .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :55-58
[10]   SYMMETRY-BREAKING BIFURCATION FOR COUPLED CHAOTIC ATTRACTORS [J].
PIKOVSKY, AS ;
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :4587-4597