Shape changes of supported Rh nanoparticles during oxidation and reduction cycles

被引:195
作者
Nolte, P. [1 ]
Stierle, A. [1 ]
Jin-Phillipp, N. Y. [1 ]
Kasper, N. [1 ]
Schulli, T. U. [2 ]
Dosch, H. [1 ]
机构
[1] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[2] Comis Nacl Energia Atom, Inst Nanosci & Cryogenie, Serv Phys Mat & Microstruct, F-38054 Grenoble 09, France
关键词
D O I
10.1126/science.1160845
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microscopic insight into how and why catalytically active nanoparticles change their shape during oxidation and reduction reactions is a pivotal challenge in the fundamental understanding of heterogeneous catalysis. We report an oxygen- induced shape transformation of rhodium nanoparticles on magnesium oxide ( 001) substrates that is lifted upon carbon monoxide exposure at 600 kelvin. A Wulff analysis of high- resolution in situ x- ray diffraction, combined with transmission electron microscopy, shows that this phenomenon is driven by the formation of a oxygen- rhodium- oxygen surface oxide at the rhodium nanofacets. This experimental access into the behavior of such nanoparticles during a catalytic cycle is useful for the development of improved heterogeneous catalysts.
引用
收藏
页码:1654 / 1658
页数:5
相关论文
共 24 条
[11]   In situ oxidation study of MgO(100) supported Pd nanoparticles [J].
Kasper, N. ;
Stierle, A. ;
Nolte, P. ;
Jin-Phillipp, Y. ;
Wagner, T. ;
de Oteyza, D. G. ;
Dosch, H. .
SURFACE SCIENCE, 2006, 600 (14) :2860-2867
[12]   Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures [J].
Lundgren, E ;
Gustafson, J ;
Mikkelsen, A ;
Andersen, JN ;
Stierle, A ;
Dosch, H ;
Todorova, M ;
Rogal, J ;
Reuter, K ;
Scheffler, M .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4-461014
[13]   Morphology of mesoscopic Rh and Pd nanoparticles under oxidizing conditions [J].
Mittendorfer, F. ;
Seriani, N. ;
Dubay, O. ;
Kresse, G. .
PHYSICAL REVIEW B, 2007, 76 (23)
[14]   Oxidationless promotion of rapid oxygen during redox CO/(NO+O2) palladium redispersion by cycling [J].
Newton, Mark A. ;
Belver-Coldeira, Carolina ;
Martinez-Arias, Arturo ;
Fernandez-Garcia, Marcos .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (45) :8629-8631
[15]   DFT plane-wave calculations of the Rh/MgO(001) interface [J].
Nokbin, S ;
Limtrakul, J ;
Hermansson, K .
SURFACE SCIENCE, 2004, 566 :977-982
[16]   Atomic-scale structure and catalytic reactivity of the RuO2(110) surface [J].
Over, H ;
Kim, YD ;
Seitsonen, AP ;
Wendt, S ;
Lundgren, E ;
Schmid, M ;
Varga, P ;
Morgante, A ;
Ertl, G .
SCIENCE, 2000, 287 (5457) :1474-1476
[17]   Real-time monitoring of growing nanoparticles [J].
Renaud, G ;
Lazzari, R ;
Revenant, C ;
Barbier, A ;
Noblet, M ;
Ulrich, O ;
Leroy, F ;
Jupille, J ;
Borensztein, Y ;
Henry, CR ;
Deville, JP ;
Scheurer, F ;
Mane-Mane, J ;
Fruchart, O .
SCIENCE, 2003, 300 (5624) :1416-1419
[18]   SURFACE X-RAY-DIFFRACTION [J].
ROBINSON, IK ;
TWEET, DJ .
REPORTS ON PROGRESS IN PHYSICS, 1992, 55 (05) :599-651
[19]   First-principles statistical mechanics study of the stability of a subnanometer thin surface oxide in reactive environments: CO oxidation at Pd(100) [J].
Rogal, Jutta ;
Reuter, Karsten ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[20]   Electron microscopy of thin-film model catalysts: Activation of alumina-supported rhodium nanoparticles [J].
Rupprechter, G ;
Hayek, K ;
Hofmeister, H .
JOURNAL OF CATALYSIS, 1998, 173 (02) :409-422