Pathway-Based Analysis for Genome-Wide Association Studies Using Supervised Principal Components

被引:43
作者
Chen, Xi [1 ]
Wang, Lily
Hu, Bo [2 ]
Guo, Mingsheng [1 ]
Barnard, John [2 ]
Zhu, Xiaofeng [3 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biostat, Div Canc Biostat, Nashville, TN 37232 USA
[2] Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Dept Epidemiol & Biostat, Cleveland, OH 44106 USA
基金
英国惠康基金;
关键词
SNPs; genome-wide association; pathway analysis; principal component analysis; GENE SET ENRICHMENT; CROHN-DISEASE; SUSCEPTIBILITY LOCI; SNPS; MULTIPLE; PATHOGENESIS; AUTOPHAGY; SURVIVAL; INNATE;
D O I
10.1002/gepi.20532
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Many complex diseases are influenced by genetic variations in multiple genes, each with only a small marginal effect on disease susceptibility. Pathway analysis, which identifies biological pathways associated with disease outcome, has become increasingly popular for genome-wide association studies (GWAS). In addition to combining weak signals from a number of SNPs in the same pathway, results from pathway analysis also shed light on the biological processes underlying disease. We propose a new pathway-based analysis method for GWAS, the supervised principal component analysis (SPCA) model. In the proposed SPCA model, a selected subset of SNPs most associated with disease outcome is used to estimate the latent variable for a pathway. The estimated latent variable for each pathway is an optimal linear combination of a selected subset of SNPs; therefore, the proposed SPCA model provides the ability to borrow strength across the SNPs in a pathway. In addition to identifying pathways associated with disease outcome, SPCA also carries out additional within-category selection to identify the most important SNPs within each gene set. The proposed model operates in a well-established statistical framework and can handle design information such as covariate adjustment and matching information in GWAS. We compare the proposed method with currently available methods using data with realistic linkage disequilibrium structures, and we illustrate the SPCA method using the Wellcome Trust Case-Control Consortium Crohn Disease (CD) data set. Genet. Epidemiol. 34:716-724, 2010. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:716 / 724
页数:9
相关论文
共 35 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   Prediction by supervised principal components [J].
Bair, E ;
Hastie, T ;
Paul, D ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :119-137
[3]   Semi-supervised methods to predict patient survival from gene expression data [J].
Bair, E ;
Tibshirani, R .
PLOS BIOLOGY, 2004, 2 (04) :511-522
[4]   Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease [J].
Barrett, Jeffrey C. ;
Hansoul, Sarah ;
Nicolae, Dan L. ;
Cho, Judy H. ;
Duerr, Richard H. ;
Rioux, John D. ;
Brant, Steven R. ;
Silverberg, Mark S. ;
Taylor, Kent D. ;
Barmada, M. Michael ;
Bitton, Alain ;
Dassopoulos, Themistocles ;
Datta, Lisa Wu ;
Green, Todd ;
Griffiths, Anne M. ;
Kistner, Emily O. ;
Murtha, Michael T. ;
Regueiro, Miguel D. ;
Rotter, Jerome I. ;
Schumm, L. Philip ;
Steinhart, A. Hillary ;
Targan, Stephan R. ;
Xavier, Ramnik J. ;
Libioulle, Cecile ;
Sandor, Cynthia ;
Lathrop, Mark ;
Belaiche, Jacques ;
Dewit, Olivier ;
Gut, Ivo ;
Heath, Simon ;
Laukens, Debby ;
Mni, Myriam ;
Rutgeerts, Paul ;
Van Gossum, Andre ;
Zelenika, Diana ;
Franchimont, Denis ;
Hugot, Jean-Pierre ;
de Vos, Martine ;
Vermeire, Severine ;
Louis, Edouard ;
Cardon, Lon R. ;
Anderson, Carl A. ;
Drummond, Hazel ;
Nimmo, Elaine ;
Ahmad, Tariq ;
Prescott, Natalie J. ;
Onnie, Clive M. ;
Fisher, Sheila A. ;
Marchini, Jonathan ;
Ghori, Jilur .
NATURE GENETICS, 2008, 40 (08) :955-962
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[7]   On the Utility of Gene Set Methods in Genomewide Association Studies of Quantitative Traits [J].
Chasman, Daniel I. .
GENETIC EPIDEMIOLOGY, 2008, 32 (07) :658-668
[8]   Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes [J].
Chen, Xi ;
Wang, Lily ;
Smith, Jonathan D. ;
Zhang, Bing .
BIOINFORMATICS, 2008, 24 (21) :2474-2481
[9]   Testing association between disease and multiple SNPs in a candidate gene [J].
Gauderman, W. James ;
Murcray, Cassandra ;
Gilliland, Frank ;
Conti, David V. .
GENETIC EPIDEMIOLOGY, 2007, 31 (05) :383-395
[10]   Analyzing gene expression data in terms of gene sets:: methodological issues [J].
Goeman, Jelle J. ;
Buehlmann, Peter .
BIOINFORMATICS, 2007, 23 (08) :980-987