Si/a-Si core/shell nanowires as nonvolatile crossbar switches

被引:203
作者
Dong, Yajie [2 ]
Yu, Guihua [2 ]
McAlpine, Michael C. [2 ]
Lu, Wei [1 ]
Lieber, Charles M. [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
关键词
D O I
10.1021/nl073224p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Radial core/shell nanowires (NWs) represent an important class of nanoscale building blocks with substantial potential for exploring fundamental electronic properties and realizing novel device applications at the nanoscale. Here, we report the synthesis of crystalline silicon/amorphous silicon (Sila-Si) core/shell NWs and studies of crossed Si/a-Si NW metal NW (Si/a-Si x M) devices and arrays. Room-temperature electrical measurements on single Si/a-Si x Ag NW devices exhibit bistable switching between high (off) and low (on) resistance states with well-defined switching threshold voltages, on/off ratios greater than 10(4), and current rectification in the on state. Temperature-dependent switching experiments suggest that rectification can be attributed to barriers to electric field-driven metal diffusion. Systematic studies of Si/a-Si x Ag NW devices show that (i) the bit size can be at least as small as 20 nm x 20 nm, (ii) the writing time is <100 ns, (iii) the retention time is >2 weeks, and (iv) devices can be switched >10(4) times without degradation in performance. In addition, studies of dense one-dimensional and two-dimensional Si/a-Si x Ag NW de vices arrays fabricated on crystalline and plastic substrates show that elements within the arrays can be independently switched and read, and moreover that bends with radii of curvature as small as 0.3 cm cause little change in device characteristics. The Si/a-Si x Ag NW devices represent a highly scalable and promising nanodevice element for assembly and fabrication of dense nonvolatile memory and programmable nanoprocessors.
引用
收藏
页码:386 / 391
页数:6
相关论文
共 34 条
  • [1] Logic circuits with carbon nanotube transistors
    Bachtold, A
    Hadley, P
    Nakanishi, T
    Dekker, C
    [J]. SCIENCE, 2001, 294 (5545) : 1317 - 1320
  • [2] Chen A, 2005, INT EL DEVICES MEET, P765
  • [3] Room-temperature negative differential resistance in nanoscale molecular junctions
    Chen, J
    Wang, W
    Reed, MA
    Rawlett, AM
    Price, DW
    Tour, JM
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (08) : 1224 - 1226
  • [4] Nanoscale molecular-switch crossbar circuits
    Chen, Y
    Jung, GY
    Ohlberg, DAA
    Li, XM
    Stewart, DR
    Jeppesen, JO
    Nielsen, KA
    Stoddart, JF
    Williams, RS
    [J]. NANOTECHNOLOGY, 2003, 14 (04) : 462 - 468
  • [5] A [2]catenane-based solid state electronically reconfigurable switch
    Collier, CP
    Mattersteig, G
    Wong, EW
    Luo, Y
    Beverly, K
    Sampaio, J
    Raymo, FM
    Stoddart, JF
    Heath, JR
    [J]. SCIENCE, 2000, 289 (5482) : 1172 - 1175
  • [6] Nonphotolithographic nanoscale memory density prospects
    DeHon, A
    Goldstein, SC
    Kuekes, PJ
    Lincoln, P
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) : 215 - 228
  • [7] First-principles calculation of transport properties of a molecular device
    Di Ventra, M
    Pantelides, ST
    Lang, ND
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (05) : 979 - 982
  • [8] Nonvolatile memory and programmable logic from molecule-gated nanowires
    Duan, XF
    Huang, Y
    Lieber, CM
    [J]. NANO LETTERS, 2002, 2 (05) : 487 - 490
  • [9] Whence molecular electronics?
    Flood, AH
    Stoddart, JF
    Steuerman, DW
    Heath, JR
    [J]. SCIENCE, 2004, 306 (5704) : 2055 - 2056
  • [10] A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre
    Green, Jonathan E.
    Choi, Jang Wook
    Boukai, Akram
    Bunimovich, Yuri
    Johnston-Halperin, Ezekiel
    DeIonno, Erica
    Luo, Yi
    Sheriff, Bonnie A.
    Xu, Ke
    Shin, Young Shik
    Tseng, Hsian-Rong
    Stoddart, J. Fraser
    Heath, James R.
    [J]. NATURE, 2007, 445 (7126) : 414 - 417