Bayesian D-optimal designs on a fixed number of design points for heteroscedastic polynomial models

被引:20
作者
Dette, H [1 ]
Wong, WK
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] Ruhr Univ Bochum, Math Inst, D-44780 Bochum, Germany
[3] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA USA
基金
美国国家卫生研究院;
关键词
approximate design; Bayesian design; canonical moment; compound optimality criterion; constrained optimal design;
D O I
10.1093/biomet/85.4.869
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider design issues in a polynomial regression model where the variance of the response depends on the independent variable exponentially. However, this dependence is not known precisely and additional parameters are required in the model. Our design criteria permit various subsets of the parameters to be estimated with different emphasis. Bayesian D-optimal designs on a compact interval, with the number of support points restricted to be one more than the degree of the polynomial, are found analytically for a large class of priors. These designs may or may not be optimal within the class of all designs, depending on the prior distribution.
引用
收藏
页码:869 / 882
页数:14
相关论文
共 27 条
[1]  
[Anonymous], OPTIMAL DESIGN EXPT
[2]   D-OPTIMUM DESIGNS FOR HETEROSCEDASTIC LINEAR-MODELS [J].
ATKINSON, AC ;
COOK, RD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :204-212
[3]   A NOTE ON OPTIMAL BAYESIAN DESIGN FOR NONLINEAR PROBLEMS [J].
CHALONER, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 37 (02) :229-235
[4]   Bayesian experimental design: A review [J].
Chaloner, K ;
Verdinelli, I .
STATISTICAL SCIENCE, 1995, 10 (03) :273-304
[5]   The equivalence of constrained and weighted designs in multiple objective design problems [J].
Clyde, M ;
Chaloner, K .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) :1236-1244
[6]   ON THE EQUIVALENCE OF CONSTRAINED AND COMPOUND OPTIMAL DESIGNS [J].
COOK, RD ;
WONG, WK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) :687-692
[7]   DIAGNOSTICS FOR HETEROSCEDASTICITY IN REGRESSION [J].
COOK, RD ;
WEISBERG, S .
BIOMETRIKA, 1983, 70 (01) :1-10
[8]  
Dette H, 1996, SCAND J STAT, V23, P195
[9]   Bayesian optimal one point designs for one parameter nonlinear models [J].
Dette, H ;
Neugebauer, HM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 52 (01) :17-31
[10]   Bayesian D-optimal designs for exponential regression models [J].
Dette, H ;
Neugebauer, HM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 60 (02) :331-349