Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide

被引:197
作者
Xu, Yuxi [1 ]
Sheng, Kaixuan [1 ]
Li, Chun [1 ]
Shi, Gaoquan [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
关键词
ORGANIC-SOLVENTS; SHEETS; FILMS; REDUCTION; OPTOELECTRONICS; DISPERSIONS;
D O I
10.1039/c1jm10768b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mildly oxidized graphene oxide (MOGO) was achieved by chemical exfoliation of graphite through a modified Hummers' method. The MOGO is not only able to be stably dispersed in water at a high concentration (1 mg mL(-1)), but also preserves the highly crystalline structure of the conjugated carbon framework. Thus, the MOGO can be used as a low-defect precursor to prepare highly conductive graphene by chemical reduction. The electrical conductivity of hydrazine or hydriodic acid reduced MOGO was measured to be 169 or 405 S cm(-1). This value is about 3 times that of the chemically converted graphene (CCG) prepared by reducing the conventional graphene oxide via Hummers' method with the same reducing agent. This work not only develops a facile route to high-throughput preparation of processable high-quality CCG, but also provides a deeper understanding of the crucial influence of the degree of oxidation of graphene oxide on the electrical properties of its reduced product.
引用
收藏
页码:7376 / 7380
页数:5
相关论文
共 31 条
[1]   Kinetic Study of the Graphite Oxide Reduction: Combined Structural and Gravimetric Experiments under Isothermal and Nonisothermal Conditions [J].
Barroso-Bujans, Fabienne ;
Alegria, Angel ;
Colmenero, Juan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (49) :21645-21651
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[5]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[6]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[7]   Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide [J].
Erickson, Kris ;
Erni, Rolf ;
Lee, Zonghoon ;
Alem, Nasim ;
Gannett, Will ;
Zettl, Alex .
ADVANCED MATERIALS, 2010, 22 (40) :4467-4472
[8]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[9]   Electronic transport properties of individual chemically reduced graphene oxide sheets [J].
Gomez-Navarro, Cristina ;
Weitz, R. Thomas ;
Bittner, Alexander M. ;
Scolari, Matteo ;
Mews, Alf ;
Burghard, Marko ;
Kern, Klaus .
NANO LETTERS, 2007, 7 (11) :3499-3503
[10]   Atomic Structure of Reduced Graphene Oxide [J].
Gomez-Navarro, Cristina ;
Meyer, Jannik C. ;
Sundaram, Ravi S. ;
Chuvilin, Andrey ;
Kurasch, Simon ;
Burghard, Marko ;
Kern, Klaus ;
Kaiser, Ute .
NANO LETTERS, 2010, 10 (04) :1144-1148