Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase η-deficient human cells treated with cisplatin and oxaliplatin

被引:50
作者
Cruet-Hennequart, Severine
Glynn, Macdara T.
Murillo, Laura S.
Coyne, Seamus
Carty, Michael P. [1 ]
机构
[1] Natl Univ Ireland Univ Coll Galway, DNA Damage Response Lab, Dept Biochem, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
cisplatin; DNA damage; DNA polymerase eta; replication arrest; RPA; DNA-PK; phosphorylation;
D O I
10.1016/j.dnarep.2007.12.012
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The chemotherapeutic drugs cisplatin and oxaliplatin act by induction of DNA damage, including monoadducts, intrastrand and interstrand crosslinks. An increased understanding of the repair and replication of platinum-damaged DNA is required to improve the effectiveness of these drugs in killing cancer cells. We have investigated the effect of expression of DNA polymerase eta (poll), a translesion synthesis (TLS) enzyme, on the response of human cell lines to cisplatin and oxaliplatin. Poll-deficient cells are more sensitive to both drugs than are normal cells. In poll-deficient cells, drug treatment leads to prolonged S-phase arrest, and increased phosphorylation of the phosphatidylinositol-3-kinase-related protein kinase (PIKK) substrates Chk1, p95/Nbs1 and RPA2, the 34 kDa subunit of replication protein A. Cisplatin- and oxaliplatin-induced hyperphosphorylation of RPA2, and association of the hyperphosphorylated protein with chromatin, is elevated in poll-deficient cells. Cisplatin-induced phosphorylation of RPA2 on serine 4/serine 8, but not on serine 33, is inhibited by the DNA-PK inhibitor, NU7441, but not by the ATM inhibitor, KU-55933. Cisplatin-induced DNA-PK-dependent hyperphosphorylation of RPA2 on serine 4/serine 8 occurs after recruitment of RPA to chromatin, as determined by immunofluorescence and by subcellular fractionation. ATR is required both for recruitment of RPA2 to chromatin and its subsequent hyperphosphorylation on serine 4/serine 8 by DNA-PK, since CGK733, an inhibitor of ATM and ATR, blocked both recruitment and hyperphosphorylation. Thus, increased sensitivity to cisplatin and oxaliplatin in DNA poll-deficient cells is associated with prolonged S-phase arrest, and enhanced PIKK-signalling, in particular activation of DNA-PK-dependent hyperphosphorylation of RPA2 on serines 4 and 8. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:582 / 596
页数:15
相关论文
共 72 条
[1]   PI 3-kinase related kinases: 'big' players in stress-induced signaling pathways [J].
Abraham, RT .
DNA REPAIR, 2004, 3 (8-9) :883-887
[2]   A role for polymerase η in the cellular tolerance to cisplatin-induced damage [J].
Albertella, MR ;
Green, CM ;
Lehmann, AR ;
O'Connor, MJ .
CANCER RESEARCH, 2005, 65 (21) :9799-9806
[3]  
Allen C, 2003, MOL CANCER RES, V1, P913
[4]   Initiating cellular stress responses [J].
Bakkenist, CJ ;
Kastan, MB .
CELL, 2004, 118 (01) :9-17
[5]   The role of DNA polymerase η in translesion synthesis past platinum-DNA adducts in human fibroblasts [J].
Bassett, E ;
King, NM ;
Bryant, MF ;
Hector, S ;
Pendyala, L ;
Chaney, SG ;
Cordeiro-Stone, M .
CANCER RESEARCH, 2004, 64 (18) :6469-6475
[6]   Induction of DNA replication-mediated double strand breaks by psoralen DNA interstrand cross-links [J].
Bessho, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (07) :5250-5254
[7]   Replication Protein A phosphorylation and the cellular response to DNA damage [J].
Binz, SK ;
Sheehan, AM ;
Wold, MS .
DNA REPAIR, 2004, 3 (8-9) :1015-1024
[8]   Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21 [J].
Block, WD ;
Yu, YP ;
Lees-Miller, SP .
NUCLEIC ACIDS RESEARCH, 2004, 32 (03) :997-1005
[9]   Interplay of replication checkpoints and repair proteins at stalled replication forks [J].
Branzei, Dana ;
Foiani, Marco .
DNA REPAIR, 2007, 6 (07) :994-1003
[10]   Eukaryotic DNA polymerases: Proposal for a revised nomenclature [J].
Burgers, PMJ ;
Koonin, EV ;
Bruford, E ;
Blanco, L ;
Burtis, KC ;
Christman, MF ;
Copeland, WC ;
Friedberg, EC ;
Hanaoka, F ;
Hinkle, DC ;
Lawrence, CW ;
Nakanishi, M ;
Ohmori, H ;
Prakash, L ;
Prakash, S ;
Reynaud, CA ;
Sugino, A ;
Todo, T ;
Wang, ZG ;
Weill, JC ;
Woodgate, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) :43487-43490