Quasistatic crack growth in nonlinear elasticity

被引:245
作者
Dal Maso, G
Francfort, GA
Toader, R
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Univ Paris 13, LPMTM, F-93430 Villetaneuse, France
[3] Dipartimento Ingn Civile, I-33100 Udine, Italy
关键词
D O I
10.1007/s00205-004-0351-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [19]. We consider the case of n-dimensional nonlinear elasticity, for an arbitrary n >= 1, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time.
引用
收藏
页码:165 / 225
页数:61
相关论文
共 31 条
[1]  
AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
[2]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[3]   ON THE LOWER SEMICONTINUITY OF QUASI-CONVEX INTEGRALS IN SBV(OMEGA, R(K)) [J].
AMBROSIO, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (03) :405-425
[4]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[5]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[6]  
BREZIS H, 1993, RMA RES NOTES APPL M, V29, P43
[7]   A density result in two-dimensional linearized elasticity, and applications [J].
Chambolle, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 167 (03) :211-233
[8]  
Dacorogna B., 1989, DIRECT METHODS CALCU
[9]   A model for the quasi-static growth of brittle fractures: Existence and approximation results [J].
Dal Maso, G ;
Toader, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 162 (02) :101-135
[10]  
DALMASO G, 2004, IN PRESS CALCULUS VA