Built-In Mechanical Stress in Viral Shells

被引:54
作者
Carrasco, C. [2 ,4 ]
Luque, A. [3 ]
Hernando-Perez, M. [1 ]
Miranda, R. [4 ]
Carrascosa, J. L. [4 ]
Serena, P. A. [2 ]
de Ridder, M. [5 ,6 ]
Raman, A. [5 ,6 ]
Gomez-Herrero, J. [1 ]
Schaap, I. A. T. [7 ]
Reguera, D. [3 ]
de Pablo, P. J. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[2] CSIC, Inst Ciencia Mat Madrid, Madrid, Spain
[3] Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain
[4] CSIC, Ctr Nacl Biotecnol, Madrid, Spain
[5] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[6] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[7] Univ Gottingen, Fak Phys, Phys Inst 3, Gottingen, Germany
关键词
BACTERIOPHAGE PHI-29; FORCE MICROSCOPY; DNA; VIRUS; PRESSURE; MICROTUBULES; ELASTICITY; EJECTION; CAPSIDS;
D O I
10.1016/j.bpj.2011.01.008
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the phi 29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated phi 29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the phi 29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration.
引用
收藏
页码:1100 / 1108
页数:9
相关论文
共 56 条
[1]   Relative microelastic mapping of living cells by atomic force microscopy [J].
A-Hassan, E ;
Heinz, WF ;
Antonik, MD ;
D'Costa, NP ;
Nageswaran, S ;
Schoenenberger, CA ;
Hoh, JH .
BIOPHYSICAL JOURNAL, 1998, 74 (03) :1564-1578
[2]  
Alberts B., 2002, The shape and structure of proteins, Vfourth, DOI 10.1093/aob/mcg023
[3]   Bacterial turgor pressure can be measured by atomic force microscopy [J].
Arnoldi, M ;
Fritz, M ;
Bäuerlein, E ;
Radmacher, M ;
Sackmann, E ;
Boulbitch, A .
PHYSICAL REVIEW E, 2000, 62 (01) :1034-1044
[4]   ASSEMBLY OF BACILLUS-SUBTILIS PHAGE-PHI-29 .1. MUTANTS IN CISTRONS CODING FOR STRUCTURAL PROTEINS [J].
CAMACHO, A ;
JIMENEZ, F ;
DELATORRE, J ;
CARRASCOSA, JL ;
MELLADO, RP ;
VASQUEZ, C ;
VINUELA, E ;
SALAS, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1977, 73 (01) :39-55
[5]   DNA-mediated anisotropic mechanical reinforcement of a virus [J].
Carrasco, C. ;
Carreira, A. ;
Schaap, I. A. T. ;
Serena, P. A. ;
Gomez-Herrero, J. ;
Mateu, M. G. ;
de Pablo, P. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (37) :13706-13711
[6]   Manipulation of the mechanical properties of a virus by protein engineering [J].
Carrasco, Carolina ;
Castellanos, Milagros ;
de Pablo, Pedro J. ;
Mateu, Mauricio G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (11) :4150-4155
[7]   Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects [J].
Chandra, N ;
Namilae, S ;
Shet, C .
PHYSICAL REVIEW B, 2004, 69 (09)
[8]   Mechanism of force generation of a viral DNA packaging motor [J].
Chemla, YR ;
Aathavan, K ;
Michaelis, J ;
Grimes, S ;
Jardine, PJ ;
Anderson, DL ;
Bustamante, C .
CELL, 2005, 122 (05) :683-692
[9]   Determinants of bacteriophage φ29 head morphology [J].
Choi, Kyung H. ;
Morais, Marc C. ;
Anderson, Dwight L. ;
Rossmann, Michael G. .
STRUCTURE, 2006, 14 (11) :1723-1727
[10]   Osmotic shock and the strength of viral capsids [J].
Cordova, A ;
Deserno, M ;
Gelbart, WM ;
Ben-Shaul, A .
BIOPHYSICAL JOURNAL, 2003, 85 (01) :70-74