Nucleation-dependent conformational conversion of the Y145Stop variant of human prion protein: Structural clues for prion propagation

被引:89
作者
Kundu, B
Maiti, NR
Jones, EM
Surewicz, KA
Vanik, DL
Surewicz, WK [1 ]
机构
[1] Case Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
关键词
D O I
10.1073/pnas.2033281100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussier-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneous conversion of the recombinant polypeptide corresponding to the Y145Stop variant (huPrP23-144) from a monomeric unordered state to a fibrillar form. This conversion is characterized by a protein concentration-dependent lag phase and has characteristics of a nucleation-dependent polymerization. Atomic force microscopy shows that huPrP23-144 fibrils are characterized by an apparent periodicity along the long axis, with an average period of 20 nm. Fourier-transform infrared spectra indicate that the conversion is associated with formation of beta-sheet structure. However, the infrared bands for huPrP23-144 are quite different from those for a synthetic peptide PrP106-126, suggesting conformational non-equivalence of beta-structures in the disease-associated Y145Stop variant and a frequently used short model peptide. To identify the region that is critical for the self-seeded assembly of huPrP23-144 amyloid, experiments were performed by using the recombinant polypeptides corresponding to prion protein fragments 23-114, 23-124, 23-134, 23-137, 23139, and 23-141. Importantly, none of the fragments ending before residue 139 showed a propensity for conformational conversion to amyloid fibrils, indicating that residues within the 138-141 region are essential for this conversion.
引用
收藏
页码:12069 / 12074
页数:6
相关论文
共 52 条
[1]  
Alonso DOV, 2001, ADV PROTEIN CHEM, V57, P107
[2]   Kinetic intermediate in the folding of human prion protein [J].
Apetri, AC ;
Surewicz, WK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :44589-44592
[3]   Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina [J].
Balguerie, A ;
Dos Reis, S ;
Ritter, C ;
Chaignepain, S ;
Coulary-Salin, B ;
Forge, V ;
Bathany, K ;
Lascu, I ;
Schmitter, JM ;
Riek, R ;
Saupe, SJ .
EMBO JOURNAL, 2003, 22 (09) :2071-2081
[4]   Folding of prion protein to its native α-helical conformation is under kinetic control [J].
Baskakov, IV ;
Legname, G ;
Prusiner, SB ;
Cohen, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :19687-19690
[5]   Role of microglia and host prion protein in neurotoxicity of a prion protein fragment [J].
Brown, DR ;
Schmidt, B ;
Kretzschmar, HA .
NATURE, 1996, 380 (6572) :345-347
[6]   Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme [J].
Canet, D ;
Last, AM ;
Tito, P ;
Sunde, M ;
Spencer, A ;
Archer, DB ;
Redfield, C ;
Robinson, CV ;
Dobson, CM .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (04) :308-315
[7]   Transmissible spongiform encephalopathies and prion protein interconversions [J].
Caughey, B ;
Chesebro, B .
ADVANCES IN VIRUS RESEARCH, VOL 56: NEUROVIROLOGY: VIRUSES AND THE BRAIN, 2001, 56 :277-311
[8]   Interactions between prion protein isoforms: the kiss of death? [J].
Caughey, B .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (04) :235-242
[9]   SECONDARY STRUCTURE-ANALYSIS OF THE SCRAPIE-ASSOCIATED PROTEIN PRP 27-30 IN WATER BY INFRARED-SPECTROSCOPY [J].
CAUGHEY, BW ;
DONG, A ;
BHAT, KS ;
ERNST, D ;
HAYES, SF ;
CAUGHEY, WS .
BIOCHEMISTRY, 1991, 30 (31) :7672-7680
[10]   Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides [J].
Chabry, J ;
Caughey, B ;
Chesebro, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :13203-13207