Determining parameters for respiration-gated radiotherapy

被引:221
作者
Vedam, SS
Keall, PJ
Kini, VR
Mohan, R
机构
[1] Virginia Commonwealth Univ, Med Coll Virginia Hosp, Dept Radiat Oncol, Richmond, VA 23298 USA
[2] Virginia Commonwealth Univ, Med Coll Virginia Hosp, Dept Biomed Engn, Richmond, VA 23298 USA
关键词
respiration-gated radiotherapy; phase difference; duty cycle;
D O I
10.1118/1.1406524
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Respiration-gated radiotherapy for tumor sites affected by respiratory motion will potentially improve radiotherapy outcomes by allowing reduced treatment margins leading to decreased complication rates and/or increased tumor control. Furthermore, for intensity-modulated radiotherapy (IMRT), respiratory gating will minimize the hot and cold spot artifacts in dose distributions that may occur as a result of interplay between respiratory motion and leaf motion. Most implementations of respiration gating rely on the real time knowledge of the relative position of the internal anatomy being treated with respect to that of an external marker. A method to determine the amplitude of motion and account for any difference in phase between the internal tumor motion and external marker motion has been developed. Treating patients using gating requires several clinical decisions, such as whether to gate during inhale or exhale, whether to use phase or amplitude tracking of the respiratory signal, and by how much the intrafraction tumor motion can be decreased at the cost of increased delivery time. These parameters may change from patient to patient. A method has been developed to provide the data necessary to make decisions as to the CTV to PTV margins to apply to a gated treatment plan. (C) 2001 American Association of Physicists in Medicine.
引用
收藏
页码:2139 / 2146
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 1993, 50 ICRU
[2]  
[Anonymous], 1999, 62 ICRU
[3]   Planning target volumes for radiotherapy: How much margin is needed? [J].
Antolak, JA ;
Rosen, II .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 44 (05) :1165-1170
[4]   Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging [J].
Balter, JM ;
Lam, KL ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (04) :939-943
[5]  
Dawson L. A., 2000, International Journal of Radiation Oncology Biology Physics, V48, P165, DOI 10.1016/S0360-3016(00)80124-8
[6]  
DOSERETZ DE, 1992, INT J RADIAT ONCOL, V24, P3
[7]   What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? [J].
Ekberg, L ;
Holmberg, O ;
Wittgren, L ;
Bjelkengren, G ;
Landberg, T .
RADIOTHERAPY AND ONCOLOGY, 1998, 48 (01) :71-77
[8]   Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation [J].
Hanley, J ;
Debois, MM ;
Mah, D ;
Mageras, GS ;
Raben, A ;
Rosenzweig, K ;
Mychalczak, B ;
Schwartz, LH ;
Gloeggler, PJ ;
Lutz, W ;
Ling, CC ;
Leibel, SA ;
Fuks, Z ;
Kutcher, GJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 45 (03) :603-611
[9]   Motion adaptive x-ray therapy: a feasibility study [J].
Keall, PJ ;
Kini, VR ;
Vedam, SS ;
Mohan, R .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (01) :1-10
[10]   Respiration gated radiotherapy treatment: A technical study [J].
Kubo, HD ;
Hill, BC .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (01) :83-91