Inverse Design of Solid-State Materials via a Continuous Representation

被引:247
作者
Noh, Juhwan [1 ]
Kim, Jaehoon [2 ]
Stein, Helge S. [3 ]
Sanchez-Lengeling, Benjamin [4 ]
Gregoire, John M. [3 ]
Aspuru-Guzik, Alan [5 ,6 ,7 ,8 ]
Jung, Yousung [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehakro, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch EEWS, 291 Daehakro, Daejeon 34141, South Korea
[3] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA
[4] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[5] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[6] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3H6, Canada
[7] Vector Inst Artificial Intelligence, Toronto, ON M5S 1M1, Canada
[8] Canadian Inst Adv Res CIFAR Senior Fellow, Toronto, ON M5S 1M1, Canada
基金
新加坡国家研究基金会;
关键词
CRYSTAL-STRUCTURE; NEURAL-NETWORKS; SMALL MOLECULES; DATABASE; DISCOVERY; GENERATION; STABILITY; MODELS;
D O I
10.1016/j.matt.2019.08.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The non-serendipitous discovery of materials with targeted properties is the ultimate goal of materials research, but to date, materials design lacks the incorporation of all available knowledge to plan the synthesis of the next material. This work presents a framework for learning a continuous representation of materials and building a model for new discovery using latent space representation. The ability of autoencoders to generate experimental materials is demonstrated with vanadium oxides via rediscovery of experimentally known structures when the model was trained without them. Approximately 20,000 hypothetical materials are generated, leading to several completely new metastable VxOy materials that may be synthesizable. Comparison with genetic algorithms suggests computational efficiency of generative models that can explore chemical compositional space effectively by learning the distributions of known materials for crystal structure prediction. These results are an important step toward machine-learned inverse design of inorganic functional materials using generative models.
引用
收藏
页码:1370 / 1384
页数:15
相关论文
共 57 条
  • [1] The introduction of structure types into the inorganic crystal structure database ICSD
    Allmann, Rudolf
    Hinek, Roland
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 2007, 63 : 412 - 417
  • [2] [Anonymous], 2017, ARXIV PREPRINT ARXIV
  • [3] Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
    Artrith, Nongnuch
    Urban, Alexander
    Ceder, Gerbrand
    [J]. PHYSICAL REVIEW B, 2017, 96 (01)
  • [4] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [5] New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
    Belsky, A
    Hellenbrandt, M
    Karen, VL
    Luksch, P
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 : 364 - 369
  • [6] 970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13
    Blum, Lorenz C.
    Reymond, Jean-Louis
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) : 8732 - +
  • [7] Chamberland B. L., 1973, Journal of Solid State Chemistry, V7, P377, DOI 10.1016/0022-4596(73)90166-7
  • [8] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
    Curtarolo, Stefano
    Setyawan, Wahyu
    Wang, Shidong
    Xue, Junkai
    Yang, Kesong
    Taylor, Richard H.
    Nelson, Lance J.
    Hart, Gus L. W.
    Sanvito, Stefano
    Buongiorno-Nardelli, Marco
    Mingo, Natalio
    Levy, Ohad
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 227 - 235
  • [9] Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure
    Davies, Daniel W.
    Butler, Keith T.
    Skelton, Jonathan M.
    Xie, Congwei
    Oganov, Artem R.
    Walsh, Aron
    [J]. CHEMICAL SCIENCE, 2018, 9 (04) : 1022 - 1030
  • [10] Crystal structure representations for machine learning models of formation energies
    Faber, Felix
    Lindmaa, Alexander
    von Lilienfeld, O. Anatole
    Armiento, Rickard
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) : 1094 - 1101