Neuroimaging at 1.5 T and 3.0 T:: Comparison of oxygenation-sensitive magnetic resonance imaging

被引:263
作者
Krüger, G [1 ]
Kastrup, A [1 ]
Glover, GH [1 ]
机构
[1] Stanford Univ, Dept Radiol, Lucas MRS Ctr, Palo Alto, CA 94305 USA
关键词
neuroimaging; spiral scan; magnetic field strength; CNR; SNR; physiological noise;
D O I
10.1002/mrm.1081
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Noise properties, the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal responses were compared during functional activation of the human brain at 1.5 and 3.0 T. At the higher field spiral gradient-echo (GRE) brain images revealed an average gain in SNR of 1.7 in fully relaxed and 2.2 in images with a repetition time (TR) of 1.5 sec. The tempered gain at longer Tps reflects the fact that the physiological noise depends on the signal strength acid becomes a larger fraction of the total noise at 3.0 T, Activation of the primary motor and visual cortex resulted in a 36% and 44% increase of "activated pixels" at 3.0 T, which reflects a greater sensitivity for the detection of activated gray matter at the higher field, The gain in the CNR exhibited a dependency on the underlying tissue, i.e., an Increase of 1.8x in regions of particular high activation-induced signal changes (presumably venous vessels) and of 2.2x in the average activated areas. These results demonstrate that 3.0 T provides a clear advantage over 1.5 T for neuroimaging of homogeneous brain tissue, although stronger physiological noise contributions, more complicated signal features in the proximity of strong susceptibility gradients, and changes In the intrinsic relaxation times may mediate the enhancement. Magn Reson Med 45:595-604, 2001, (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:595 / 604
页数:10
相关论文
共 30 条
[1]  
BOTTOMLEY PA, 1984, MED PHYS, V11, P425, DOI 10.1118/1.595535
[2]   T1 AND T2 MEASUREMENTS ON A 1.5-T COMMERCIAL MR IMAGER [J].
BREGER, RK ;
RIMM, AA ;
FISCHER, ME ;
PAPKE, RA ;
HAUGHTON, VM .
RADIOLOGY, 1989, 171 (01) :273-276
[3]   Dynamics of blood flow and oxygenation changes during brain activation: The balloon model [J].
Buxton, RB ;
Wong, EC ;
Frank, LR .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :855-864
[4]  
Cohen MS, 1999, JMRI-J MAGN RESON IM, V10, P33, DOI 10.1002/(SICI)1522-2586(199907)10:1<33::AID-JMRI5>3.0.CO
[5]  
2-N
[6]   LOCALIZATION OF BRAIN-FUNCTION USING MAGNETIC-RESONANCE-IMAGING [J].
COHEN, MS ;
BOOKHEIMER, SY .
TRENDS IN NEUROSCIENCES, 1994, 17 (07) :268-277
[7]   INFLOW VERSUS DEOXYHEMOGLOBIN EFFECTS IN BOLD FUNCTIONAL MRI USING GRADIENT ECHOES AT 1.5 T [J].
DUYN, JH ;
MOONEN, CTW ;
VANYPEREN, GH ;
DEBOER, RW ;
LUYTEN, PR .
NMR IN BIOMEDICINE, 1994, 7 (1-2) :83-88
[8]   THE INTRINSIC SIGNAL-TO-NOISE RATIO IN NMR IMAGING [J].
EDELSTEIN, WA ;
GLOVER, GH ;
HARDY, CJ ;
REDINGTON, RW .
MAGNETIC RESONANCE IN MEDICINE, 1986, 3 (04) :604-618
[9]   ANALYSIS OF T2 LIMITATIONS AND OFF-RESONANCE EFFECTS ON SPATIAL-RESOLUTION AND ARTIFACTS IN ECHO-PLANAR IMAGING [J].
FARZANEH, F ;
RIEDERER, SJ ;
PELC, NJ .
MAGNETIC RESONANCE IN MEDICINE, 1990, 14 (01) :123-139
[10]   THE UNCOMMON LONGITUDINAL RELAXATION DISPERSION OF HUMAN-BRAIN WHITE MATTER [J].
FISCHER, HW ;
VANHAVERBEKE, Y ;
SCHMITZFEUERHAKE, I ;
MULLER, RN .
MAGNETIC RESONANCE IN MEDICINE, 1989, 9 (03) :441-446