Single junction AlGaAs/GaAs and InGaP/GaAs solar cells and test structures have been grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), respectively, on Si wafers coated with compositionally-graded GeSi buffers. The combination of controlled strain relaxation within the GeSi buffer and monolayer-scale control of the III-V layer nucleation is shown to reproducibly generate minority carrier lifetimes exceeding 10 nanoseconds within GaAs overlayers. The III-V layers are free of long-range antiphase domain disorder, with threading dislocation densities in the high-10(5) cm(-2) range, consistent with the low residual dislocation density in the Ge cap of the graded buffer structure. Single junction GaAs cells grown by both MBE and MOCVD on the Ge/GeSi/Si substrates demonstrated high Voc values for GaAs cells grown on Si. Record Voc values for MOCVD-grown single junction InGaP/GaAs cells exceeded 980 mV (AM0) with fill factors of 0.79. Additionally, external quantum efficiency data indicates no degradation in carrier collection from GaAs homoepitaxial cells for current single-junction cell designs grown by MBE. Based on these results, cell efficiencies in excess of 18.5% under AM0 conditions should be attainable with cell designs demonstrating state of the art J(SC) values. Such cell performance demonstrates the potential and viability of graded GeSi buffers for the development of III-V cells on Si wafers.