Active-learning strategies in computer-assisted drug discovery

被引:163
作者
Reker, Daniel [1 ]
Schneider, Gisbert [1 ]
机构
[1] ETH, Swiss Fed Inst Technol, Dept Chem & Appl Biosci, CH-8093 Zurich, Switzerland
关键词
SUPPORT VECTOR MACHINES; GENETIC ALGORITHM; LEAD OPTIMIZATION; COMBINATORIAL LIBRARIES; CHEMICAL ENTITIES; DESIGN; INHIBITORS; EXPERIMENTATION; VISUALIZATION; GENERATION;
D O I
10.1016/j.drudis.2014.12.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
High-throughput compound screening is time and resource consuming, and considerable effort is invested into screening compound libraries, profiling, and selecting the most promising candidates for further testing. Active-learning methods assist the selection process by focusing on areas of chemical space that have the greatest chance of success while considering structural novelty. The core feature of these algorithms is their ability to adapt the structure-activity landscapes through feedback. Instead of full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of the various computational active-learning approaches and outline their potential for drug discovery.
引用
收藏
页码:458 / 465
页数:8
相关论文
共 63 条
[1]   Predicting Potent Compounds via Model-Based Global Optimization [J].
Ahmadi, Mohsen ;
Vogt, Martin ;
Iyer, Preeti ;
Bajorath, Juergen ;
Froehlich, Holger .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (03) :553-559
[2]   Integration of virtual and high-throughput screening [J].
Bajorath, F .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (11) :882-894
[3]   Navigating structure-activity landscapes [J].
Bajorath, Juergen ;
Peltason, Lisa ;
Wawer, Mathias ;
Guha, Rajarshi ;
Lajiness, Michael S. ;
Van Drie, John H. .
DRUG DISCOVERY TODAY, 2009, 14 (13-14) :698-705
[4]  
Baram Y, 2004, J MACH LEARN RES, V5, P255
[5]   The design of combinatorial libraries using properties and 3D pharmacophore fingerprints [J].
Beno, BR ;
Mason, JS .
DRUG DISCOVERY TODAY, 2001, 6 (05) :251-258
[6]   Automated design of ligands to polypharmacological profiles [J].
Besnard, Jeremy ;
Ruda, Gian Filippo ;
Setola, Vincent ;
Abecassis, Keren ;
Rodriguiz, Ramona M. ;
Huang, Xi-Ping ;
Norval, Suzanne ;
Sassano, Maria F. ;
Shin, Antony I. ;
Webster, Lauren A. ;
Simeons, Frederick R. C. ;
Stojanovski, Laste ;
Prat, Annik ;
Seidah, Nabil G. ;
Constam, Daniel B. ;
Bickerton, G. Richard ;
Read, Kevin D. ;
Wetsel, William C. ;
Gilbert, Ian H. ;
Roth, Bryan L. ;
Hopkins, Andrew L. .
NATURE, 2012, 492 (7428) :215-+
[7]   From virtual to real screening for D3 dopamine receptor ligands [J].
Byvatov, E ;
Sasse, BC ;
Stark, H ;
Schneider, G .
CHEMBIOCHEM, 2005, 6 (06) :997-999
[8]   Automated Discovery of Novel Drug Formulations Using Predictive Iterated High Throughput Experimentation [J].
Caschera, Filippo ;
Gazzola, Gianluca ;
Bedau, Mark A. ;
Moreno, Carolina Bosch ;
Buchanan, Andrew ;
Cawse, James ;
Packard, Norman ;
Hanczyc, Martin M. .
PLOS ONE, 2010, 5 (01)
[9]  
Chapelle O., 2006, Semi-Supervised Learning, V2
[10]   Discovery informatics: its evolving role in drug discovery [J].
Claus, BL ;
Underwood, DJ .
DRUG DISCOVERY TODAY, 2002, 7 (18) :957-966