How To Control the Crystalline Structure of Supracrystals of 5-nm Silver Nanocrystals

被引:44
作者
Courty, Alexa [1 ]
Richardi, Johannes [1 ]
Albouy, Pierre-Antoine [2 ]
Pileni, Marie-Paule [1 ]
机构
[1] Univ Paris 06, CNRS, Lab Mat Mesoscop & Nanometr LM2N, UMR 7070, F-75252 Paris 05, France
[2] Univ Paris 11, CNRS, Lab Phys Solides, UMR 8502, F-91405 Orsay, France
关键词
silver nanocrystals; crystalline structure; 3D self-assembly; computational chemistry; SUPRA-CRYSTALS; SELF-ORGANIZATION; STERIC STABILIZATION; COBALT NANOCRYSTALS; MAGNETIC-PROPERTIES; OXIDE NANOCRYSTALS; SUPERLATTICES; GOLD; NANOPARTICLES; PARTICLES;
D O I
10.1021/cm201313r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supracrystals of 5-nm silver nanocrystals are characterized by various structures, ranging from face-centered-cubic (fcc), to hexagonal-close-packed (hcp), to body-centered-cubic (bcc) structures. Here, it is shown that the transition from fcc to hcp is solvent-dependent and attributed to specific stacking processes, depending on the evaporation kinetics. Hence, at a fixed substrate temperature, the most volatile solvents (such as hexane and toluene) favor the growth of fcc superlattices, whereas with solvents that have a higher boiling point (such as octane, decane, and dodecane), hcp supracrystals are produced. In contrast, the formation of bcc structures is shown to be solvent-independent and is attributed to van der Waals attractions. The chain length of the coating agent and the deposition temperature govern the transition from compact (fcc/hcp) to bcc supracrystals. The experimentally phase transitions are interpreted by theoretical approaches.
引用
收藏
页码:4186 / 4192
页数:7
相关论文
共 60 条
[11]  
2-P
[12]   THEORETICAL PREDICTION OF ELASTIC CONTRIBUTION TO STERIC STABILIZATION [J].
EVANS, R ;
SMITHAM, JB ;
NAPPER, DH .
COLLOID AND POLYMER SCIENCE, 1977, 255 (02) :161-167
[13]  
FRIEDEL J, 1974, J PHYS LETT-PARIS, V35, pL59, DOI 10.1051/jphyslet:0197400350405900
[14]   Highly oriented molecular Ag nanocrystal arrays [J].
Harfenist, SA ;
Wang, ZL ;
Alvarez, MM ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (33) :13904-13910
[15]   Three-dimensional hexagonal close-packed superlattice of passivated Ag nanocrystals [J].
Harfenist, SA ;
Wang, ZL ;
Whetten, RL ;
Vezmar, I ;
Alvarez, MM .
ADVANCED MATERIALS, 1997, 9 (10) :817-&
[16]   Tuning of solid phase in supracrystals made of silver nanocrystals [J].
Henry, A. -I. ;
Courty, A. ;
Pileni, M. -P. ;
Albouy, P. -A. ;
Israelachvili, J. .
NANO LETTERS, 2008, 8 (07) :2000-2005
[17]   Self-Assembly of Ligated Gold Nanoparticles: Phenomenological Modeling and Computer Simulations [J].
Khan, Siddique J. ;
Pierce, F. ;
Sorensen, C. M. ;
Chakrabarti, A. .
LANGMUIR, 2009, 25 (24) :13861-13868
[18]   Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters [J].
Kiely, CJ ;
Fink, J ;
Brust, M ;
Bethell, D ;
Schiffrin, DJ .
NATURE, 1998, 396 (6710) :444-446
[19]   2D silver nanocrystal ordering modulated by various substrates and revealed using oxygen plasma treatment [J].
Klecha, Emilie ;
Arfaoui, Imad ;
Richardi, Johannes ;
Ingert, Dorothee ;
Pileni, Marie-Paule .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (07) :2953-2962
[20]   Small-angle x-ray-scattering study of silver-nanocrystal disorder-order phase transitions [J].
Korgel, BA ;
Fitzmaurice, D .
PHYSICAL REVIEW B, 1999, 59 (22) :14191-14201