Metabolic Engineering in Nicotiana benthamiana Reveals Key Enzyme Functions in Arabidopsis Indole Glucosinolate Modification

被引:156
作者
Pfalz, Marina [1 ,2 ]
Mikkelsen, Michael Dalgaard [3 ]
Bednarek, Pawel [4 ]
Olsen, Carl Erik [5 ]
Halkier, Barbara Ann [3 ]
Kroymann, Juergen [1 ]
机构
[1] Univ Paris 11, CNRS, Lab Ecol Systmat & Evolut, F-91405 Orsay, France
[2] Max Planck Inst Chem Ecol, D-07745 Jena, Germany
[3] Univ Copenhagen, Fac Life Sci, Dept Plant Biol, VKR Res Ctr Proact Plants, DK-1871 Copenhagen, Denmark
[4] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
[5] Univ Copenhagen, Fac Life Sci, Dept Basic Sci & Environm Bioorgan Chem, DK-1871 Copenhagen, Denmark
关键词
SECONDARY METABOLISM; O-METHYLTRANSFERASE; CHAIN ELONGATION; BIOSYNTHESIS; GENE; SEQUENCES; THALIANA; CYP83B1; SYSTEM; AUXIN;
D O I
10.1105/tpc.110.081711
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.
引用
收藏
页码:716 / 729
页数:14
相关论文
共 64 条
[1]   Scopolin-hydrolyzing β-glucosidases in roots of Arabidopsis [J].
Ahn, Young Ock ;
Shimizu, Bun-ichi ;
Sakata, Kanzo ;
Gantulga, Dashzeveg ;
Zhou, Zhanghe ;
Bevan, David R. ;
Esen, Asim .
PLANT AND CELL PHYSIOLOGY, 2010, 51 (01) :132-143
[2]   Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis [J].
Albinsky, Doris ;
Sawada, Yuji ;
Kuwahara, Ayuko ;
Nagano, Mutsumi ;
Hirai, Akiko ;
Saito, Kazuki ;
Hirai, Masami Yokota .
AMINO ACIDS, 2010, 39 (04) :1067-1075
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[5]   A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense [J].
Bednarek, Pawel ;
Pislewska-Bednarek, Mariola ;
Svatos, Ales ;
Schneider, Bernd ;
Doubsky, Jan ;
Mansurova, Madina ;
Humphry, Matt ;
Consonni, Chiara ;
Panstruga, Ralph ;
Sanchez-Vallet, Andrea ;
Molina, Antonio ;
Schulze-Lefert, Paul .
SCIENCE, 2009, 323 (5910) :101-106
[6]   Positive selection driving diversification in plant secondary metabolism [J].
Benderoth, Markus ;
Textor, Susanne ;
Windsor, Aaron J. ;
Mitchell-Olds, Thomas ;
Gershenzon, Jonathan ;
Kroymann, Juergen .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (24) :9118-9123
[7]   Methylthioalkylmalate synthases: genetics, ecology and evolution [J].
Benderoth, Markus ;
Pfalz, Marina ;
Kroymann, Juergen .
PHYTOCHEMISTRY REVIEWS, 2009, 8 (01) :255-268
[8]   Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana [J].
Brown, PD ;
Tokuhisa, JG ;
Reichelt, M ;
Gershenzon, J .
PHYTOCHEMISTRY, 2003, 62 (03) :471-481
[9]   T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites [J].
Brunaud, V ;
Balzergue, S ;
Dubreucq, B ;
Aubourg, S ;
Samson, F ;
Chauvin, S ;
Bechtold, N ;
Cruaud, C ;
DeRose, R ;
Pelletier, G ;
Lepiniec, L ;
Caboche, M ;
Lecharny, A .
EMBO REPORTS, 2002, 3 (12) :1152-1157
[10]   Glucosinolates, structures and analysis in food [J].
Clarke, Don Brian .
ANALYTICAL METHODS, 2010, 2 (04) :310-325