Dipolar stochastic Loewner evolutions

被引:31
作者
Bauer, M [1 ]
Bernard, D [1 ]
Houdayer, J [1 ]
机构
[1] CEA Saclay, Serv Phys Theor Saclay, CEA DSM SPhT, Unite Rech Assoc CNRS, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2005年
关键词
stochastic Loewner evolution;
D O I
10.1088/1742-5468/2005/03/P03001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present basic properties of dipolar stochastic Loewner evolutions, a new version of stochastic Loewner evolutions (SLEs) in which the critical interfaces end randomly on an interval of the boundary of a planar domain. We present a general argument explaining why correlation functions of models of statistical mechanics are expected to be martingales and we give a relation between dipolar SLEs and conformal field theories (CFTs). We compute SLE excursion and/or visiting probabilities, including the probability for a point to be on the left/right of the SLE trace or that for being inside the SLE hull. These functions, which turn out to be harmonic, have a simple CFT interpretation. We also present numerical simulations of the ferromagnetic Ising interface that confirm both the probabilistic approach and the CFT mapping.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 20 条
[1]   Conformal transformations and the SLE partition function martingale [J].
Bauer, M ;
Bernard, D .
ANNALES HENRI POINCARE, 2004, 5 (02) :289-326
[2]   SLE martingales and the Virasoro algebra [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2003, 557 (3-4) :309-316
[3]   SLEκ growth processes and conformal field theories [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2002, 543 (1-2) :135-138
[4]  
BAUER M, MATHPH0401019
[5]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[6]   BOUNDARY-CONDITIONS, FUSION RULES AND THE VERLINDE FORMULA [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1989, 324 (03) :581-596
[7]  
DIFRANCESCO P, 1996, CONFORMAL FIELD THEO
[8]   4-POINT CORRELATION-FUNCTIONS AND THE OPERATOR ALGEBRA IN 2D CONFORMAL INVARIANT THEORIES WITH CENTRAL CHARGE C LESS-THAN-OR-EQUAL-TO 1 [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1985, 251 (5-6) :691-734
[9]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[10]   A cluster Monte Carlo algorithm for 2-dimensional spin glasses [J].
Houdayer, J .
EUROPEAN PHYSICAL JOURNAL B, 2001, 22 (04) :479-484