Bayesian deconvolution of noisy filtered point processes

被引:23
作者
Andrieu, C
Barat, É
Doucet, A
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
[2] CEA Technol Avancees DEIN Saclay, LETI, Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会;
关键词
Bayesian methods; deconvolution; model selection; reversible jump MCMC;
D O I
10.1109/78.890355
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The detection and estimation of filtered point processes using noisy data is an essential requirement in many seismic, ultrasonic, and nuclear applications. In this paper, we address this joint detection/estimation problem using a Bayesian approach, which allows us to easily include any relevant prior information. Performing Bayesian inference for such a complex model is a challenging computational problem as it requires the evaluation of intricate high-dimensional integrals. We develop here an efficient stochastic procedure based on a reversible jump Markov chain Monte Carlo method to solve this problem and prove the geometric convergence of the algorithm. The proposed model and algorithm are demonstrated on an application arising in nuclear science.
引用
收藏
页码:134 / 146
页数:13
相关论文
共 28 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
ANDRIEU C, 1998, P C SPIE SAN DIEG CA
[3]  
Arjas E, 1997, COMPUTATION STAT, V12, P385
[4]  
BARAT E, 1995, P 9 POW PLANTS DYN C
[5]  
Bernardo J. M., 1994, BAYESIAN THEORY
[6]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[7]   Simulation-based methods for blind maximum-likelihood filter identification [J].
Cappé, O ;
Doucet, A ;
Lavielle, M ;
Moulines, E .
SIGNAL PROCESSING, 1999, 73 (1-2) :3-25
[8]   A simulation approach to convergence rates for Markov chain Monte Carlo algorithms [J].
Cowles, MK ;
Rosenthal, JS .
STATISTICS AND COMPUTING, 1998, 8 (02) :115-124
[9]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[10]   Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes [J].
Doucet, A ;
Duvaut, P .
SIGNAL PROCESSING, 1997, 57 (02) :147-161