On p-normal forms of nonlinear systems

被引:86
作者
Cheng, DZ [1 ]
Lin, W
机构
[1] Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
关键词
differential geometric approach; feedback equivalence; local diffeamorphism; nonlinear systems; p-normal form; state feedback;
D O I
10.1109/TAC.2003.814270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using the differential-geometric control theory, we present in this note a necessary and sufficient condition under which an affine system is locally feedback equivalent to, via a change of coordinates and restricted smooth state feedback, a generalized normal form called p-normal form, which includes Brunovsky canonical form and feedback linearizable systems in a lower-triangular form as its special cases. We also give an algorithm for computing the appropriate coordinate transformations and feedback control laws.
引用
收藏
页码:1242 / 1248
页数:7
相关论文
共 23 条
[1]  
[Anonymous], ALGEBRAIC GEOMETRIC
[2]  
BROCKETT RW, 1978, P 6 IFAC WORLD C HEL, V6, P1115
[3]   LOCAL STABILIZATION OF MINIMUM-PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A .
SYSTEMS & CONTROL LETTERS, 1988, 11 (01) :9-17
[4]   Equivalence of nonlinear systems to triangular form: The singular case [J].
Celikovsky, S ;
Nijmeijer, H .
SYSTEMS & CONTROL LETTERS, 1996, 27 (03) :135-144
[5]   NONLINEAR CONTROLLABILITY AND OBSERVABILITY [J].
HERMANN, R ;
KRENER, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) :728-740
[6]   GLOBAL TRANSFORMATIONS OF NON-LINEAR SYSTEMS [J].
HUNT, LR ;
SU, R ;
MEYER, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) :24-31
[7]   NON-LINEAR DECOUPLING VIA FEEDBACK - A DIFFERENTIAL GEOMETRIC APPROACH [J].
ISIDORI, A ;
KRENER, AJ ;
GORIGIORGI, C ;
MONACO, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (02) :331-345
[8]  
Isidori A., 1995, NONLINEAR SYSTEMS
[9]  
Jakubczyk B, 1980, Bull. Acad. Polon. Sci., V28, P517, DOI 10.12691/ajme-5-6-13
[10]  
Krener A. J., 1983, Proceedings of the 22nd IEEE Conference on Decision and Control, P126