On the distribution of Pickands coordinates in bivariate EV and GP models

被引:5
作者
Falk, M [1 ]
Reiss, RD
机构
[1] Univ Wurzburg, Inst Angewandte Math & Stat, D-97074 Wurzburg, Germany
[2] Univ Siegen, Fachbereich Math, D-57068 Siegen, Germany
关键词
pickands coordinates; max-stable distribution; bivariate generalized pareto distribution; pickands representation; dependence function; peaks-over-threshold approach (POT); local asymptotic normality (LAN); Hajek-LeCam convolution theorem;
D O I
10.1016/j.jmva.2004.02.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (U, V) be a random vector with U <= 0, V <= 0. The random variables Z = V/(U+ V), C = U + V are the Pickands coordinates of (U, V). They are a useful tool for the investigation of the tail behaviour in bivariate peaks-over-threshold models in extreme value theory. We compute the distribution of (Z, C) among others under the assumption that the distribution function H of (U, V) is in a smooth neighborhood of a generalized Pareto distribution (GP) with uniform marginals. It turns out that if H is a GP, then Z and C are independent, conditional on C > c >= - 1. These results are used to derive approximations of the empirical point process of the exceedances (Z(i), C-i) with C-i > c in an iid sample of size n. Local asymptotic normality is established for the approximating point process in a parametric model, where c = c(n) TO as n -> infinity . (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 295
页数:29
相关论文
共 35 条
[2]  
BHATTACHARYA RN, 1976, NORMAL APPROX ASYMPT
[3]   A nonparametric estimation procedure for bivariate extreme value copulas [J].
Caperaa, P ;
Fougeres, AL ;
Genest, C .
BIOMETRIKA, 1997, 84 (03) :567-577
[4]  
Coles S., 1999, EXTREMES, V2, P339, DOI [10.1023/A:1009963131610, DOI 10.1023/A:1009963131610]
[5]  
COLES S, 2001, SERIES STAT
[6]   TESTING FOR EXPONENTIAL AND MARSHALL OLKIN DISTRIBUTIONS [J].
CSORGO, S ;
WELSH, AH .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 23 (03) :287-300
[7]  
DEHAAN L, 1977, Z WAHRSCHEINLICHKEIT, V40, P317
[8]  
DEHAAN L, 1985, P 45 SESS ISI HAG, P185
[9]   ON THE LIMITING BEHAVIOR OF THE PICKANDS ESTIMATOR FOR BIVARIATE EXTREME-VALUE DISTRIBUTIONS [J].
DEHEUVELS, P .
STATISTICS & PROBABILITY LETTERS, 1991, 12 (05) :429-439
[10]   INTRINSIC ESTIMATION OF THE DEPENDENCE STRUCTURE FOR BIVARIATE EXTREMES [J].
DEOLIVEIRA, JT .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (03) :213-218