Dimensionality reduction for visualizing single-cell data using UMAP

被引:3192
作者
Becht, Etienne [1 ]
McInnes, Leland [2 ]
Healy, John [2 ]
Dutertre, Charles-Antoine [1 ]
Kwok, Immanuel W. H. [1 ]
Ng, Lai Guan [1 ]
Ginhoux, Florent [1 ]
Newell, Evan W. [1 ,3 ]
机构
[1] ASTAR, Singapore Immunol Network SIgN, Singapore, Singapore
[2] Tutte Inst Math & Comp, Ottawa, ON, Canada
[3] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
关键词
ATLAS; CYTOMETRY;
D O I
10.1038/nbt.4314
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.
引用
收藏
页码:38 / +
页数:8
相关论文
共 22 条
[11]   The pre-B-cell receptor [J].
Martensson, Inga-Lill ;
Keenan, Rebecca A. ;
Licence, Steve .
CURRENT OPINION IN IMMUNOLOGY, 2007, 19 (02) :137-142
[12]  
McInnes L., 2018, 180203426 ARXIV
[13]  
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861]
[14]   Computational flow cytometry: helping to make sense of high-dimensional immunology data [J].
Saeys, Yvan ;
Van Gassen, Sofie ;
Lambrecht, Bart N. .
NATURE REVIEWS IMMUNOLOGY, 2016, 16 (07) :449-462
[15]  
Samusik N, 2016, NAT METHODS, V13, P493, DOI [10.1038/NMETH.3863, 10.1038/nmeth.3863]
[16]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+
[17]  
van der Maaten L, 2014, J MACH LEARN RES, V15, P3221
[18]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[19]   Mass Cytometry of the Human Mucosal Immune System Identifies Tissue- and Disease-Associated Immune Subsets [J].
van Unen, Vincent ;
Li, Na ;
Molendijk, Ilse ;
Temurhan, Mine ;
Hollt, Thomas ;
van der Meulen-de Jong, Andrea E. ;
Verspaget, Hein W. ;
Mearin, M. Luisa ;
Mulder, Chris J. ;
van Bergen, Jeroen ;
Lelieveldt, Boudewijn P. F. ;
Koning, Frits .
IMMUNITY, 2016, 44 (05) :1227-1239
[20]  
Wattenberg M., 2016, Distill, V1, DOI [10.23915/distill.00002, DOI 10.23915/DISTILL.00002]