High-performance nanostructured thermoelectric materials

被引:846
作者
Li, Jing-Feng [1 ]
Liu, Wei-Shu [1 ,2 ]
Zhao, Li-Dong [1 ,2 ]
Zhou, Min [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing, Peoples R China
关键词
HIGH-TEMPERATURE; HIGH FIGURE; PHONON-GLASS; EFFICIENCY; AGPBMSBTE2+M; MERIT; POWER; SUBSTITUTION; ENHANCEMENT; DISTORTION;
D O I
10.1038/asiamat.2010.138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric effects enable direct conversion between thermal and electrical energy and provide an alternative route for power generation and refrigeration. Over the past ten years, the exploration of high-performance thermoelectric materials has attracted great attention from both an academic research perspective and with a view to industrial applications. This review summarizes the progress that has been made in recent years in developing thermoelectric materials with a high dimension-less figure of merits (ZT) and the related fabrication processes for producing nanostuctured materials. The challenge to develop thermoelectric materials with superior performance is to tailor the interconnected thermoelectric physical parameters electrical conductivity, Seebeck coefficient and thermal conductivity for a crystalline system. Nanostructures provide a chance to disconnect the linkage between thermal and electrical transport by introducing some new scattering mechanisms. Recent improvements in thermoelectric efficiency appear to be dominated by efforts to reduce the lattice thermal conductivity through nanostructural design. The materials focused in this review include Bi-Te alloys, skutterudite compounds, Ag-Pb-Sb-Te quaternary systems, half-Heusler compounds and some high-ZT oxides. Possible future strategies for developing thermoelectric materials are also discussed.
引用
收藏
页码:152 / 158
页数:7
相关论文
共 86 条
[1]   Specific-heat evidence for strong electron correlations in the thermoelectric material (Na,Ca) Co2O4 [J].
Ando, Y ;
Miyamoto, N ;
Segawa, K ;
Kawata, T ;
Terasaki, I .
PHYSICAL REVIEW B, 1999, 60 (15) :10580-10583
[2]   La0.95Sr0.05CoO3:: An efficient room-temperature thermoelectric oxide [J].
Androulakis, J ;
Migiakis, P ;
Giapintzakis, J .
APPLIED PHYSICS LETTERS, 2004, 84 (07) :1099-1101
[3]   Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m [J].
Androulakis, John ;
Hsu, Kuei Fang ;
Pcionek, Robert ;
Kong, Huijun ;
Uher, Ctirad ;
DAngelo, Jonathan J. ;
Downey, Adam ;
Hogan, Tim ;
Kanatzidis, Mercouri G. .
ADVANCED MATERIALS, 2006, 18 (09) :1170-+
[4]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[5]   Improved thermoelectric properties in double-filled Cey/2Yby/2Fe4-x(Co/Ni)xSb12 skutterudites -: art. no. 033710 [J].
Bérardan, D ;
Alleno, E ;
Godart, C ;
Puyet, M ;
Lenoir, B ;
Lackner, R ;
Bauer, E ;
Girard, L ;
Ravot, D .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (03)
[6]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[7]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[8]   Preparation and thermoelectric properties of AgPbmSbTe2+m alloys [J].
Cai, K. F. ;
Yan, C. ;
He, Z. M. ;
Cui, J. L. ;
Stiewe, C. ;
Mueller, E. ;
Li, H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 469 (1-2) :499-503
[9]   Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure [J].
Cao, Y. Q. ;
Zhao, X. B. ;
Zhu, T. J. ;
Zhang, X. B. ;
Tu, J. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (14)
[10]   The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions [J].
Chen, LD ;
Huang, XY ;
Zhou, M ;
Shi, X ;
Zhang, WB .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (06)