High-performance nanostructured thermoelectric materials

被引:846
作者
Li, Jing-Feng [1 ]
Liu, Wei-Shu [1 ,2 ]
Zhao, Li-Dong [1 ,2 ]
Zhou, Min [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing, Peoples R China
关键词
HIGH-TEMPERATURE; HIGH FIGURE; PHONON-GLASS; EFFICIENCY; AGPBMSBTE2+M; MERIT; POWER; SUBSTITUTION; ENHANCEMENT; DISTORTION;
D O I
10.1038/asiamat.2010.138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric effects enable direct conversion between thermal and electrical energy and provide an alternative route for power generation and refrigeration. Over the past ten years, the exploration of high-performance thermoelectric materials has attracted great attention from both an academic research perspective and with a view to industrial applications. This review summarizes the progress that has been made in recent years in developing thermoelectric materials with a high dimension-less figure of merits (ZT) and the related fabrication processes for producing nanostuctured materials. The challenge to develop thermoelectric materials with superior performance is to tailor the interconnected thermoelectric physical parameters electrical conductivity, Seebeck coefficient and thermal conductivity for a crystalline system. Nanostructures provide a chance to disconnect the linkage between thermal and electrical transport by introducing some new scattering mechanisms. Recent improvements in thermoelectric efficiency appear to be dominated by efforts to reduce the lattice thermal conductivity through nanostructural design. The materials focused in this review include Bi-Te alloys, skutterudite compounds, Ag-Pb-Sb-Te quaternary systems, half-Heusler compounds and some high-ZT oxides. Possible future strategies for developing thermoelectric materials are also discussed.
引用
收藏
页码:152 / 158
页数:7
相关论文
共 86 条
[21]   EFFECT OF QUANTUM-WELL STRUCTURES ON THE THERMOELECTRIC FIGURE OF MERIT [J].
HICKS, LD ;
DRESSELHAUS, MS .
PHYSICAL REVIEW B, 1993, 47 (19) :12727-12731
[22]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[23]   Cubic AgPbmSbTe2+m:: Bulk thermoelectric materials with high figure of merit [J].
Hsu, KF ;
Loo, S ;
Guo, F ;
Chen, W ;
Dyck, JS ;
Uher, C ;
Hogan, T ;
Polychroniadis, EK ;
Kanatzidis, MG .
SCIENCE, 2004, 303 (5659) :818-821
[24]   Thermoelectric properties of Ba3Co2O6(CO3)0.7 containing one-dimensional CoO6 octahedral columns [J].
Iwasaki, Kouta ;
Yamamoto, Teruhisa ;
Yamane, Hisanori ;
Takeda, Takashi ;
Arai, Shigeo ;
Miyazaki, Hidetoshi ;
Tatsumi, Kazuyoshi ;
Yoshino, Masahito ;
Ito, Tsuyoshi ;
Arita, Yuji ;
Muto, Shunsuke ;
Nagasaki, Takanori ;
Matsui, Tsuneo .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (03)
[25]   Zintl phases for thermoelectric devices [J].
Kauzlarich, Susan M. ;
Brown, Shawna R. ;
Snyder, G. Jeffrey .
DALTON TRANSACTIONS, 2007, (21) :2099-2107
[26]   Detectability of dissipative motion in quantum vacuum via superradiance [J].
Kim, Woo-Joong ;
Brownell, James Hayden ;
Onofrio, Roberto .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[27]   Complex oxide materials for potential thermoelectric applications [J].
Koumoto, K ;
Terasaki, I ;
Funahashi, R .
MRS BULLETIN, 2006, 31 (03) :206-210
[28]  
Koumoto K., 2006, CRC THERMOELECTRIC H
[29]   Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride [J].
Lan, Yucheng ;
Poudel, Bed ;
Ma, Yi ;
Wang, Dezhi ;
Dresselhaus, Mildred S. ;
Chen, Gang ;
Ren, Zhifeng .
NANO LETTERS, 2009, 9 (04) :1419-1422
[30]   Ruddlesden-Popper phases as thermoelectric oxides:: Nb-doped SrO(SrTiO3)n (n=1,2) [J].
Lee, Kyu Hyoung ;
Kim, Sung Wng ;
Ohta, Hiromichi ;
Koumoto, Kunihito .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (06)