Highly efficient endogenous human gene correction using designed zinc-finger nucleases

被引:1198
作者
Urnov, FD
Miller, JC
Lee, YL
Beausejour, CM
Rock, JM
Augustus, S
Jamieson, AC
Porteus, MH
Gregory, PD
Holmes, MC
机构
[1] Sangamo BioSci Inc, Richmond, CA 94804 USA
[2] Univ Texas, SW Med Ctr, Dept Pediat, Dallas, TX 75390 USA
[3] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
关键词
D O I
10.1038/nature03556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Permanent modification of the human genome in vivo is impractical owing to the low frequency of homologous recombination in human cells, a fact that hampers biomedical research and progress towards safe and effective gene therapy. Here we report a general solution using two fundamental biological processes: DNA recognition by C2H2 zinc-finger proteins and homology-directed repair of DNA double-strand breaks. Zinc-finger proteins engineered to recognize a unique chromosomal site can be fused to a nuclease domain, and a double-strand break induced by the resulting zinc-finger nuclease can create specific sequence alterations by stimulating homologous recombination between the chromosome and an extrachromosomal DNA donor. We show that zinc-finger nucleases designed against an X-linked severe combined immune deficiency ( SCID) mutation in the IL2R gamma gene yielded more than 18% gene-modified human cells without selection. Remarkably, about 7% of the cells acquired the desired genetic modification on both X chromosomes, with cell genotype accurately reflected at the messenger RNA and protein levels. We observe comparably high frequencies in human T cells, raising the possibility of strategies based on zinc-finger nucleases for the treatment of disease.
引用
收藏
页码:646 / 651
页数:6
相关论文
共 39 条
[1]   Stimulation of homologous recombination through targeted cleavage by chimeric nucleases [J].
Bibikova, M ;
Carroll, D ;
Segal, DJ ;
Trautman, JK ;
Smith, J ;
Kim, YG ;
Chandrasegaran, S .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (01) :289-297
[2]   Enhancing gene targeting with designed zinc finger nucleases [J].
Bibikova, M ;
Beumer, K ;
Trautman, JK ;
Carroll, D .
SCIENCE, 2003, 300 (5620) :764-764
[3]  
Bibikova M, 2002, GENETICS, V161, P1169
[4]   Bypass of senescence after disruption of p21(CIP1/WAF1) gene in normal diploid human fibroblasts [J].
Brown, JP ;
Wei, WY ;
Sedivy, JM .
SCIENCE, 1997, 277 (5327) :831-834
[5]   Primary immunodeficiency diseases due to defects in lymphocytes. [J].
Buckley, RH .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 343 (18) :1313-1324
[6]  
Bunz F, 2002, CANCER RES, V62, P1129
[7]   Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease [J].
Cavazzana-Calvo, M ;
Hacein-Bey, S ;
Basile, CD ;
Gross, F ;
Yvon, E ;
Nusbaum, P ;
Selz, F ;
Hue, C ;
Certain, S ;
Casanova, JL ;
Bousso, P ;
Le Deist, F ;
Fischer, A .
SCIENCE, 2000, 288 (5466) :669-672
[8]   Physical basis of a protein-DNA recognition code [J].
Choo, Y ;
Klug, A .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (01) :117-125
[9]   IN-VIVO REPRESSION BY A SITE-SPECIFIC DNA-BINDING PROTEIN DESIGNED AGAINST AN ONCOGENIC SEQUENCE [J].
CHOO, Y ;
SANCHEZGARCIA, I ;
KLUG, A .
NATURE, 1994, 372 (6507) :642-645
[10]   Advances in zinc finger engineering [J].
Choo, Y ;
Isalan, M .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (04) :411-416