Structure, dynamics, and function of RNA modification enzymes

被引:41
作者
Ishitani, Ryuichiro [1 ]
Yokoyama, Shigeyuki [2 ]
Nureki, Osamu [1 ]
机构
[1] Tokyo Inst Technol, Dept Biol Informat, Grad Sch Biosci & Biotechnol, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] Univ Tokyo, Dept Biophys & Biochem, Grad Sch Sci, Tokyo 1130033, Japan
基金
日本科学技术振兴机构;
关键词
D O I
10.1016/j.sbi.2008.05.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most noncoding RNAs (ncRNAs) are post-transcriptionally modified, which generally reinforces the specific tertiary structure of the RNAs to accelerate their functions. Biochemical and structural investigations of RNA modification have primarily focused on ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), the best-characterized ncRNAs, which play central roles in the translation of the genetic code. Especially in tRNA, modifications not only stabilize the L-shaped tertiary structure but also alter its function by improving and switching its molecular recognition. Furthermore, it has recently been proposed that the modification procedure itself contributes to the RNA (re)folding, in which the modification enzymes function as RNA chaperones. Recent genome and postgenome (proteomics and transcriptomics) analyses have identified new genes encoding enzymes responsible for ncRNA modifications. Further structural analyses of RNA-modification enzyme complexes have elucidated the structural basis by which the modification enzymes specifically recognize the target RNAs and ingeniously incorporate the chemical modifications into the precise position. This paper provides an overview of the recent progress in the structural biology of ncRNA-modification enzymes.
引用
收藏
页码:330 / 339
页数:10
相关论文
共 103 条
[51]   Synthesis and assembly of the box C + D small nucleolar RNPs [J].
Lafontaine, DLJ ;
Tollervey, D .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (08) :2650-2659
[52]   The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase [J].
Lafontaine, DLJ ;
Bousquet-Antonelli, C ;
Henry, Y ;
Caizergues-Ferrer, M ;
Tollervey, D .
GENES & DEVELOPMENT, 1998, 12 (04) :527-537
[53]   A unique RNA fold in the RumA-RNA-Cofactor ternary complex contributes to substrate selectivity and enzymatic function [J].
Lee, TT ;
Agarwalla, S ;
Stroud, RM .
CELL, 2005, 120 (05) :599-611
[54]   snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs [J].
Lestrade, Laurent ;
Weber, Michel J. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D158-D162
[55]   Crystal structure of an H/ACA box ribonucleoprotein particle [J].
Li, Ling ;
Ye, Keqiong .
NATURE, 2006, 443 (7109) :302-307
[56]   Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex [J].
Liang, Bo ;
Xue, Song ;
Terns, Rebecca M. ;
Terns, Michael P. ;
Li, Hong .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (12) :1189-1195
[57]   THE MODIFIED NUCLEOSIDES OF RNA - SUMMARY [J].
LIMBACH, PA ;
CRAIN, PF ;
MCCLOSKEY, JA .
NUCLEIC ACIDS RESEARCH, 1994, 22 (12) :2183-2196
[58]   Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA [J].
Losey, HC ;
Ruthenburg, AJ ;
Verdine, GL .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (02) :153-159
[59]   Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity [J].
Manival, X ;
Charron, C ;
Fourmann, JB ;
Godard, F ;
Charpentier, B ;
Branlant, C .
NUCLEIC ACIDS RESEARCH, 2006, 34 (03) :826-839
[60]  
Matsugi J, 1996, J BIOCHEM, V119, P811