Structure, dynamics, and function of RNA modification enzymes

被引:41
作者
Ishitani, Ryuichiro [1 ]
Yokoyama, Shigeyuki [2 ]
Nureki, Osamu [1 ]
机构
[1] Tokyo Inst Technol, Dept Biol Informat, Grad Sch Biosci & Biotechnol, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] Univ Tokyo, Dept Biophys & Biochem, Grad Sch Sci, Tokyo 1130033, Japan
基金
日本科学技术振兴机构;
关键词
D O I
10.1016/j.sbi.2008.05.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most noncoding RNAs (ncRNAs) are post-transcriptionally modified, which generally reinforces the specific tertiary structure of the RNAs to accelerate their functions. Biochemical and structural investigations of RNA modification have primarily focused on ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs), the best-characterized ncRNAs, which play central roles in the translation of the genetic code. Especially in tRNA, modifications not only stabilize the L-shaped tertiary structure but also alter its function by improving and switching its molecular recognition. Furthermore, it has recently been proposed that the modification procedure itself contributes to the RNA (re)folding, in which the modification enzymes function as RNA chaperones. Recent genome and postgenome (proteomics and transcriptomics) analyses have identified new genes encoding enzymes responsible for ncRNA modifications. Further structural analyses of RNA-modification enzyme complexes have elucidated the structural basis by which the modification enzymes specifically recognize the target RNAs and ingeniously incorporate the chemical modifications into the precise position. This paper provides an overview of the recent progress in the structural biology of ncRNA-modification enzymes.
引用
收藏
页码:330 / 339
页数:10
相关论文
共 103 条
[81]   An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA [J].
Soma, A ;
Ikeuchi, Y ;
Kanemasa, S ;
Kobayashi, K ;
Ogasawara, N ;
Ote, T ;
Kato, J ;
Watanabe, K ;
Sekine, Y ;
Suzuki, T .
MOLECULAR CELL, 2003, 12 (03) :689-698
[82]  
Steinberg S, 1995, RNA, V1, P886
[83]   Naturally-occurring modification restricts the anticodon domain conformational space of tRNAPhe [J].
Stuart, JW ;
Koshlap, KM ;
Guenther, R ;
Agris, PF .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 334 (05) :901-918
[84]   ANTISUPPRESSOR MUTATION IN ESCHERICHIA-COLI DEFECTIVE IN BIOSYNTHESIS OF 5-METHYLAMINOMETHYL-2-THIOURIDINE [J].
SULLIVAN, MA ;
CANNON, JF ;
WEBB, FH ;
BOCK, RM .
JOURNAL OF BACTERIOLOGY, 1985, 161 (01) :368-376
[85]   Functional specialization of domains tandemly duplicated within 16S rRNA methyltransferase RsmC [J].
Sunita, S. ;
Purta, Elzbieta ;
Durawa, Malgorzata ;
Tkaczuk, Karolina L. ;
Swaathi, J. ;
Bujnicki, Janusz M. ;
Sivaraman, J. .
NUCLEIC ACIDS RESEARCH, 2007, 35 (13) :4264-4274
[86]   Domain organization and crystal structure of the catalytic domain of E-coli RluF, a pseudouridine synthase that acts on 23S rRNA [J].
Sunita, S. ;
Zhenxing, H. ;
Swaathi, J. ;
Cygler, Miroslaw ;
Matte, Allan ;
Sivaraman, J. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 359 (04) :998-1009
[87]   Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA [J].
Suzuki, Yoko ;
Noma, Akiko ;
Suzuki, Tsutomu ;
Senda, Miki ;
Senda, Toshiya ;
Ishitani, Ryuichiro ;
Nureki, Osamu .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 372 (05) :1204-1214
[88]  
Terns MP, 2002, GENE EXPRESSION, V10, P17
[89]   Improvement of reading frame maintenance is a common function for several tRNA modifications [J].
Urbonavicius, J ;
Qian, O ;
Durand, JMB ;
Hagervall, TG ;
Björk, GR .
EMBO JOURNAL, 2001, 20 (17) :4863-4873
[90]   Discovery of a gene family critical to wyosine base formation in a subset of phenylalanine-specific transfer RNAs [J].
Waas, WF ;
de Crécy-Lagard, V ;
Schimmel, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (45) :37616-37622