Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential

被引:61
作者
Parker, Nadeene [1 ]
Vidal-Puig, Antonio [2 ]
Brand, Martin D. [1 ]
机构
[1] Wellcome Trust Res Labs, MRC Dunn Human Nutr Unit, Cambridge CB2 0XY, England
[2] Addenbrookes Hosp, Inst Metab Sci, Metab Res Labs, Cambridge CB2 0QQ, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
adenine nucleotide translocase (ANT); 4-hydroxynonenal (HNE); mitochondria; proton leak; uncoupling protein 3 (UCP3);
D O I
10.1042/BSR20080002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mild uncoupling of oxidative phosphorylation, caused by a leak of protons back into the matrix, limits mitochondrial production of ROS (reactive oxygen species). This proton leak can be induced by the lipid peroxidation products of ROS, such as HNE (4-hydroxynonenal). HNE activates uncoupling proteins (UCP1, UCP2 and UCP3) and ANT (adenine nucleotide translocase), thereby providing a negative feedback loop. The mechanism of activation and the conditions necessary to induce uncoupling by HNE are unclear. We have found that activation of proton leak by HNE in rat and mouse skeletal muscle mitochondria is dependent on incubation with respiratory substrate. In the presence of HNE, mitochondria energized with succinate became progressively more leaky to protons over time compared with mitochondria in the absence of either HNE or succinate. Energized mitochondria must attain a high membrane potential to allow HNE to activate uncoupling: a drop of 10-20 mV from the resting value is sufficient to blunt induction of proton leak by HNE. Uncoupling occurs through UCP3 (11%), ANT (64%) and other pathways (25%). Our findings have shown that exogenous HNE only activates uncoupling at high membrane potential. These results suggest that both endogenous HNE production and high membrane potential are required before mild uncoupling will be triggered to attenuate mitochondrial ROS production.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 19 条
[1]   The basal proton conductance of mitochondria depends on adenine nucleotide translocase content [J].
Brand, MD ;
Pakay, JL ;
Ocloo, A ;
Kokoszka, J ;
Wallace, DC ;
Brookes, PS ;
Cornwall, EJ .
BIOCHEMICAL JOURNAL, 2005, 392 :353-362
[2]  
Brand MD, 2004, BIOCHEM SOC SYMP, V71, P203
[3]   Uncoupling to survive? The role of mitochondrial inefficiency in ageing [J].
Brand, MD .
EXPERIMENTAL GERONTOLOGY, 2000, 35 (6-7) :811-820
[4]  
BRAND MD, 1995, BIOENERGETICS PRACTI, P39
[5]   The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3 [J].
Cadenas, S ;
Echtay, KS ;
Harper, JA ;
Jekabsons, MB ;
Buckingham, JA ;
Grau, E ;
Abuin, A ;
Chapman, H ;
Clapham, JC ;
Brand, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (04) :2773-2778
[6]   Uncoupling proteins: A role in protection against reactive oxygen species - or not? [J].
Cannon, Barbara ;
Shabalina, Irina G. ;
Kramarova, Tatiana V. ;
Petrovic, Natasa ;
Nedergaard, Jan .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (5-6) :449-458
[7]   Hydroxynonenal and uncoupling proteins: A model for protection against oxidative damage [J].
Echtay, KS ;
Pakay, JL ;
Esteves, TC ;
Brand, MD .
BIOFACTORS, 2005, 24 (1-4) :119-130
[8]   A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling [J].
Echtay, KS ;
Esteves, TC ;
Pakay, JL ;
Jekabsons, MB ;
Lambert, AJ ;
Portero-Otín, M ;
Pamplona, R ;
Vidal-Puig, AJ ;
Wang, S ;
Roebuck, SJ ;
Brand, MD .
EMBO JOURNAL, 2003, 22 (16) :4103-4110
[9]   CHEMISTRY AND BIOCHEMISTRY OF 4-HYDROXYNONENAL, MALONALDEHYDE AND RELATED ALDEHYDES [J].
ESTERBAUER, H ;
SCHAUR, RJ ;
ZOLLNER, H .
FREE RADICAL BIOLOGY AND MEDICINE, 1991, 11 (01) :81-128
[10]   Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria [J].
Esteves, TC ;
Parker, N ;
Brand, MD .
BIOCHEMICAL JOURNAL, 2006, 395 (619-628) :619-628