The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants

被引:83
作者
La Camera, Sylvain [1 ]
L'Haridon, Floriane [1 ]
Astier, Jeremy [1 ]
Zander, Mark [2 ]
Abou-Mansour, Eliane [1 ]
Page, Gonzague [1 ]
Thurow, Corinna [2 ]
Wendehenne, David [3 ]
Gatz, Christiane [2 ]
Metraux, Jean-Pierre [1 ]
Lamotte, Olivier [1 ,3 ]
机构
[1] Univ Fribourg, Dept Biol, CH-1700 Fribourg, Switzerland
[2] Univ Gottingen, Albrecht von Haller Inst Pflanzenwissensch, D-37073 Gottingen, Germany
[3] Univ Bourgogne, CNRS, INRA 1088, UMR 5184, F-21065 Dijon, France
关键词
glutaredoxin; Botrytis cinerea; jasmonic acid; salicylic acid; necrotrophic pathogen; SYSTEMIC ACQUIRED-RESISTANCE; MALE-STERILE MUTANT; SALICYLIC-ACID; TRANSCRIPTION FACTORS; PSEUDOMONAS-SYRINGAE; JASMONIC ACID; PETAL DEVELOPMENT; DEFENSE PATHWAYS; TGA FACTORS; CROSS-TALK;
D O I
10.1111/j.1365-313X.2011.04706.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Botrytis cinerea is a major pre- and post-harvest necrotrophic pathogen with a broad host range that causes substantial crop losses. The plant hormone jasmonic acid (JA) is involved in the basal resistance against this fungus. Despite basal resistance, virulent strains of B. cinerea can cause disease on Arabidopsis thaliana and virulent pathogens can interfere with the metabolism of the host in a way to facilitate infection of the plant. However, plant genes that are required by the pathogen for infection remain poorly described. To find such genes, we have compared the changes in gene expression induced in A. thaliana by JA with those induced after B. cinerea using genome-wide microarrays. We have identified genes that are repressed by JA but that are induced by B. cinerea. In this study, we describe one candidate gene, ATGRXS13, that encodes for a putative glutaredoxin and that exhibits such a crossed expression. In plants that are infected by this necrotrophic fungus, ATGRXS13 expression was negatively controlled by JA and TGA transcription factors but also through a JA-salicylic acid (SA) cross-talk mechanism as B. cinerea induced SA production that positively controlled ATGRXS13 expression. Furthermore, plants impaired in ATGRXS13 exhibited resistance to B. cinerea. Finally, we present a model whereby B. cinerea takes advantage of defence signalling pathways of the plant to help the colonization of its host.
引用
收藏
页码:507 / 519
页数:13
相关论文
共 66 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters [J].
Bandyopadhyay, Sibali ;
Gama, Filipe ;
Molina-Navarro, Maria Micaela ;
Gualberto, Jose Manuel ;
Claxton, Ronald ;
Naik, Sunil G. ;
Huynh, Boi Hanh ;
Herrero, Enrique ;
Jacquot, Jean Pierre ;
Johnson, Michael K. ;
Rouhier, Nicolas .
EMBO JOURNAL, 2008, 27 (07) :1122-1133
[3]   Role of plant hormones in plant defence responses [J].
Bari, Rajendra ;
Jones, Jonathan D. G. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :473-488
[4]   A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors [J].
Boller, Thomas ;
Felix, Georg .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :379-406
[5]   Signal crosstalk and induced resistance: Straddling the line between cost and benefit [J].
Bostock, RM .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2005, 43 :545-580
[6]   Cuticular defects lead to full immunity to a major plant pathogen [J].
Chassot, Celine ;
Nawrath, Christiane ;
Metraux, Jean-Pierre .
PLANT JOURNAL, 2007, 49 (06) :972-980
[7]   AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage [J].
Cheng, Ning-Hui ;
Liu, Jian-Zhong ;
Brock, Amanda ;
Nelsono, Richard S. ;
Hirschi, Kendal D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (36) :26280-26288
[8]   Host-microbe interactions: Shaping the evolution of the plant immune response [J].
Chisholm, ST ;
Coaker, G ;
Day, B ;
Staskawicz, BJ .
CELL, 2006, 124 (04) :803-814
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Evolution and diversity of glutaredoxins in photosynthetic organisms [J].
Couturier, Jeremy ;
Jacquot, Jean-Pierre ;
Rouhier, Nicolas .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2009, 66 (15) :2539-2557