Control of chaos: Methods and applications in engineering

被引:312
作者
Fradkov, AL
Evans, RJ
机构
[1] Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Univ Melbourne, Dept Elect Engn, Natl ICT Australia, Parkville, Vic 3010, Australia
基金
俄罗斯基础研究基金会;
关键词
nonlinear control; chaotic behavior;
D O I
10.1016/j.arcontrol.2005.01.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A survey of the emerging field termed "control of chaos" is given. Several major branches of research are discussed in detail: feedforward or "nonfeedback control" (based on periodic excitation of the system); "OGY method" (based on linearization of the Poincare map), "Pyragas method" (based on a time-delay feedback), traditional control engineering methods including linear, nonlinear and adaptive control, neural networks and fuzzy control. Some unsolved problems concerning the justification of chaos control methods are presented. Other directions of active research such as chaotic mixing, chaotization, etc. are outlined. Applications in various fields of engineering are discussed. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 56
页数:24
相关论文
共 294 条
[11]   Probabilistic control of chaos through small perturbations [J].
Antoniou, I ;
Bosco, F .
CHAOS SOLITONS & FRACTALS, 2000, 11 (1-3) :359-371
[12]   The control of chaos: Theoretical schemes and experimental realizations [J].
Arecchi, FT ;
Boccaletti, S ;
Ciofini, M ;
Meucci, R ;
Grebogi, C .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (08) :1643-1655
[13]   Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos [J].
Arecchi, FT ;
Boccaletti, S .
CHAOS, 1997, 7 (04) :621-634
[14]   Dynamical analysis and control of microcantilevers [J].
Ashhab, M ;
Salapaka, MV ;
Dahleh, M ;
Mezic, I .
AUTOMATICA, 1999, 35 (10) :1663-1670
[15]   Using control of chaos to refine approximations to periodic points [J].
Aston, PJ ;
Bird, CM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (01) :227-235
[16]  
Aston PJ, 1998, CHAOS SOLITON FRACT, V9, P1289, DOI 10.1016/S0960-0779(98)00063-0
[17]   Control of chaos in discrete Josephson transmission lines [J].
Atkin, IL ;
Abraham, E .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) :2894-2896
[18]   Sliding-mode adaptive observer approach to chaotic synchronization [J].
Azemi, A ;
Yaz, EE .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2000, 122 (04) :758-765
[19]   CHAOTIC MOTION IN NON-LINEAR FEEDBACK-SYSTEMS [J].
BAILLIEUL, J ;
BROCKETT, RW ;
WASHBURN, RB .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (11) :990-997
[20]   Controlling the onset of homoclinic chaos due to parametric noise [J].
Basios, V ;
Bountis, T ;
Nicolis, G .
PHYSICS LETTERS A, 1999, 251 (04) :250-258