Gate-Bias Controlled Charge Trapping as a Mechanism for NO2 Detection with Field-Effect Transistors

被引:58
作者
Andringa, Anne-Marije [1 ,2 ]
Meijboom, Juliaan R. [2 ]
Smits, Edsger C. P. [3 ]
Mathijssen, Simon G. J. [2 ,4 ]
Blom, Paul W. M. [1 ,3 ]
de Leeuw, Dago M. [1 ,2 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Philips Res Labs, NL-5656 AE Eindhoven, Netherlands
[3] Holst Ctr, NL-5656 AE Eindhoven, Netherlands
[4] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
GAS-SENSING PROPERTIES; SENSORS; FILM; HYDROGEN; SENSITIVITY;
D O I
10.1002/adfm.201001560
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Detection of nitrogen dioxide, NO2, is required to monitor the air-quality for human health and safety. Commercial sensors are typically chemiresistors, however field-effect transistors are being investigated. Although numerous investigations have been reported, the NO2 sensing mechanism is not clear. Here, the detection mechanism using ZnO field-effect transistors is investigated. The current gradually decreases upon NO2 exposure and application of a positive gate bias. The current decrease originates from the trapping of electrons, yielding a shift of the threshold voltage towards the applied gate bias. The shift is observed for extremely low NO2 concentrations down to 10 ppb and can phenomenologically be described by a stretched-exponential time relaxation. NO2 detection has been demonstrated with n-type, p-type, and ambipolar semiconductors. In all cases, the threshold voltage shifts due to gate bias induced electron trapping. The description of the NO2 detection with field-effect transistors is generic for all semiconductors and can be used to improve future NO2 sensors.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 53 条
[1]   Low-concentration NO2 detection with an adsorption porous silicon FET [J].
Barillaro, G ;
Diligenti, A ;
Nannini, A ;
Strambini, LM ;
Comini, E ;
Sberveglieri, G .
IEEE SENSORS JOURNAL, 2006, 6 (01) :19-23
[2]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[3]   Metal oxide-based gas sensor research: How to? [J].
Barsan, N. ;
Koziej, D. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :18-35
[4]  
Bârsan N, 2003, J PHYS-CONDENS MAT, V15, pR813, DOI 10.1088/0953-8984/15/20/201
[5]   High-Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere [J].
Bashir, Aneeqa ;
Woebkenberg, Paul H. ;
Smith, Jeremy ;
Ball, James M. ;
Adamopoulos, George ;
Bradley, Donal D. C. ;
Anthopoulos, Thomas D. .
ADVANCED MATERIALS, 2009, 21 (21) :2226-+
[6]   Phthalocyanine-based field-effect transistors as gas sensors [J].
Bouvet, M .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 384 (02) :366-373
[7]   NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition [J].
Cantalini, C ;
Valentini, L ;
Lozzi, L ;
Armentano, I ;
Kenny, JM ;
Santucci, S .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 93 (1-3) :333-337
[8]   Orbital-order-induced magnetic anisotropy and intrinsic phase separation of the Pr0.50+XSr0.50-XMnO3 single crystals [J].
Cao, SX ;
Kang, BJ ;
Zhang, JC ;
Yuan, SJ .
APPLIED PHYSICS LETTERS, 2006, 88 (17)
[9]   Gas sensitivity measurements on NO2 sensors based on copper(II) tetrakis(n-butylaminocarbonyl)phthalocyanine LB films [J].
Capone, S ;
Mongelli, S ;
Rella, R ;
Siciliano, P ;
Valli, L .
LANGMUIR, 1999, 15 (05) :1748-1753
[10]   CONNECTION BETWEEN THE MEYER-NELDEL RULE AND STRETCHED-EXPONENTIAL RELAXATION [J].
CHEN, YF ;
HUANG, SF .
PHYSICAL REVIEW B, 1991, 44 (24) :13775-13778