Kruzkov's estimates for scalar conservation laws revisited

被引:96
作者
Bouchut, F
Perthame, B
机构
[1] Univ Orleans, F-45067 Orleans 2, France
[2] CNRS, UMR 6628, Dept Math, F-45067 Orleans, France
[3] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[4] Univ Paris 06, URA 189, F-75252 Paris 05, France
关键词
multi-dimensional scalar conservation laws; error estimates; entropy inequalities; finite volumes;
D O I
10.1090/S0002-9947-98-02204-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a synthetic statement of Kruzkov-type estimates ibr multidimensional scalar conservation laws. We apply it to obtain various estimates for different approximation problems. In particular we recover for a model equation the rate of convergence in h(1/4) known for finite volume methods on unstructured grids.
引用
收藏
页码:2847 / 2870
页数:24
相关论文
共 20 条
[1]  
[Anonymous], 1970, MATH USSR SB
[2]   STRONG SOLUTIONS IN L(1) OF DEGENERATE PARABOLIC EQUATIONS [J].
BENILAN, P ;
GARIEPY, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (02) :473-502
[3]   A MUSCL method satisfying all the numerical entropy inequalities [J].
Bouchut, F ;
Bourdarias, C ;
Perthame, B .
MATHEMATICS OF COMPUTATION, 1996, 65 (216) :1439-1461
[4]   CONVERGENCE OF AN UPSTREAM FINITE-VOLUME SCHEME FOR A NONLINEAR HYPERBOLIC EQUATION ON A TRIANGULAR MESH [J].
CHAMPIER, S ;
GALLOUET, T ;
HERBIN, R .
NUMERISCHE MATHEMATIK, 1993, 66 (02) :139-157
[5]   A priori error estimates for numerical methods for scalar conservation laws .1. The general approach [J].
Cockburn, B ;
Gremaud, PA .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :533-573
[6]   CONVERGENCE OF THE FINITE-VOLUME METHOD FOR MULTIDIMENSIONAL CONSERVATION-LAWS [J].
COCKBURN, B ;
COQUEL, F ;
LEFLOCH, PG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :687-705
[7]  
COCKBURN B, 1994, MATH COMPUT, V63, P77, DOI 10.1090/S0025-5718-1994-1240657-4
[8]   Error estimates for finite element methods for scalar conservation laws [J].
Cockburn, B ;
Gremaud, PA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :522-554
[10]  
EYMARD R, IN PRESS HDB NUMERIC