Worst-case analysis of finite-time control policies

被引:65
作者
Ma, DL [1 ]
Braatz, RD [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
batch control; crystallization; optimal control; robustness analysis; worst-case performance;
D O I
10.1109/87.944471
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finite-time control policies are common in batch and semibatch operations. A novel approach is proposed that quantifies the impact of parameter and control implementation inaccuracies on the performance of such control policies. This information can be used to decide whether more experiments are needed to produce parameter estimates of higher accuracy, or to define performance objectives for the lower level control loops that implement the control trajectory. The approach is evaluated through application to the multidimensional growth of crystals used in nonlinear optics applications, where the nominal parameters and uncertainties are quantified from experimental data. Robustness estimates are provided with reasonable computational requirements.
引用
收藏
页码:766 / 774
页数:9
相关论文
共 60 条
[21]   ROBUSTNESS IN THE PRESENCE OF MIXED PARAMETRIC UNCERTAINTY AND UNMODELED DYNAMICS [J].
FAN, MKH ;
TITS, AL ;
DOYLE, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (01) :25-38
[22]   A MEASURE OF WORST-CASE H-INFINITY PERFORMANCE AND OF LARGEST ACCEPTABLE UNCERTAINTY [J].
FAN, MKH ;
TITS, AL .
SYSTEMS & CONTROL LETTERS, 1992, 18 (06) :409-421
[23]   Efficient sensitivity analysis of large-scale differential-algebraic systems [J].
Feehery, WF ;
Tolsma, JE ;
Barton, PI .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (01) :41-54
[24]   Computation of the robustness margin with the skewed μ tool [J].
Ferreres, G ;
Fromion, V .
SYSTEMS & CONTROL LETTERS, 1997, 32 (04) :193-202
[25]   The real structured singular value is hardly approximable [J].
Fu, MY .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (09) :1286-1288
[26]   Parametric sensitivity functions for hybrid discrete/continuous systems [J].
Galán, S ;
Feehery, WE ;
Barton, PI .
APPLIED NUMERICAL MATHEMATICS, 1999, 31 (01) :17-47
[27]   A methodology for on-line setpoint modification for batch reactor control in the presence of modeling error [J].
Gattu, G ;
Zafiriou, E .
CHEMICAL ENGINEERING JOURNAL, 1999, 75 (01) :21-29
[28]  
Golub GH, 2013, Matrix Computations, V4
[29]  
Hindmarsh A. C, 1983, IMACS T SCI COMPUTAT, V1, P55
[30]  
Khatri S, 1998, P AMER CONTR CONF, P2314, DOI 10.1109/ACC.1998.703044