Nanoheteroepitaxy: Nanofabrication route to improved epitaxial growth

被引:57
作者
Zubia, D [1 ]
Zaidi, SH
Hersee, SD
Brueck, SRJ
机构
[1] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA
[3] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87106 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2000年 / 18卷 / 06期
关键词
D O I
10.1116/1.1321283
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanoheteroepitaxy is a fundamentally new epitaxial approach that utilizes three-dimensional stress relief mechanisms available to nanoscale heterostructures to eliminate defects provided the island diameter is below a critical value 2l(c),. Analysis shows that 2l(c)similar to (15-30)X the critical thickness h(c). In the case of GaAs on Si (similar to4% misfit), 2l(c)similar to 40nm. In material systems such as GaN on Si (similar to 20% misfit), where the misfit is much larger and interfacial defects are unavoidable, the nanoheteroepitaxial structure is shown to reduce the formation and propagation of threading defects. Nanostructured substrate parameters that impact growth are discussed and interferometric lithography is introduced as a method for fabrication of large-area substrates for nanoheteroepitaxy, Si nanoisland diameters as small as 20 nm are demonstrated. Scanning and transmission electron microscopy data of GaN grown on Si (iiia organometallic vapor phase epitaxy) shows reduced threading defects in nanostructured samples compared to growth on planar substrates. Photoluminescence intensity data of nanostructured samples is enhanced by similar to 100X as compared to planar-growth samples. (C) 2000 American Vacuum Society. [S0734-211X(00)11206-5].
引用
收藏
页码:3514 / 3520
页数:7
相关论文
共 20 条
[1]   HOLOGRAPHIC LITHOGRAPHY WITH THICK PHOTORESIST [J].
ANDERSON, EH ;
HORWITZ, CM ;
SMITH, HI .
APPLIED PHYSICS LETTERS, 1983, 43 (09) :874-875
[2]   Process development for 180-nm structures using interferometric lithography and I-line photoresist [J].
Chen, XL ;
Zhang, Z ;
Brueck, SRJ ;
Carpio, RA ;
Petersen, JS .
EMERGING LITHOGRAPHIC TECHNOLOGIES, 1997, 3048 :309-318
[3]   Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications [J].
Chen, XL ;
Zaidi, SH ;
Brueck, SRJ ;
Devine, DJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (05) :3339-3349
[4]   ROOM-TEMPERATURE CONTINUOUS OPERATION OF P-N ALXGA1-XAS-GAAS QUANTUM-WELL HETEROSTRUCTURE LASERS GROWN ON SI [J].
DEPPE, DG ;
HOLONYAK, N ;
NAM, DW ;
HSIEH, KC ;
JACKSON, GS ;
MATYI, RJ ;
SHICHIJO, H ;
EPLER, JE ;
CHUNG, HF .
APPLIED PHYSICS LETTERS, 1987, 51 (09) :637-639
[5]  
EGAWA T, 1997, IEEE PHOTONIC TECH L, V9, P87
[6]   GALLIUM-ARSENIDE AND OTHER COMPOUND SEMICONDUCTORS ON SILICON [J].
FANG, SF ;
ADOMI, K ;
IYER, S ;
MORKOC, H ;
ZABEL, H ;
CHOI, C ;
OTSUKA, N .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (07) :R31-R58
[7]   THE ROLE OF THE LOW-TEMPERATURE BUFFER LAYER AND LAYER THICKNESS IN THE OPTIMIZATION OF OMVPE GROWTH OF GAN ON SAPPHIRE [J].
HERSEE, SD ;
RAMER, J ;
ZHENG, K ;
KRANENBERG, C ;
MALLOY, K ;
BANAS, M ;
GOORSKY, M .
JOURNAL OF ELECTRONIC MATERIALS, 1995, 24 (11) :1519-1523
[8]   DAMAGE OF COHERENT MULTILAYER STRUCTURES BY INJECTION OF DISLOCATIONS OR CRACKS [J].
HIRTH, JP ;
EVANS, AG .
JOURNAL OF APPLIED PHYSICS, 1986, 60 (07) :2372-2376
[9]  
Hirth JP., 1982, Theory of Dislocations
[10]   Anisotropic epitaxial lateral growth in GaN selective area epitaxy [J].
Kapolnek, D ;
Keller, S ;
Vetury, R ;
Underwood, RD ;
Kozodoy, P ;
Baars, SPD ;
Mishra, UK .
APPLIED PHYSICS LETTERS, 1997, 71 (09) :1204-1206