DIME: R-package for identifying differential ChIP-seq based on an ensemble of mixture models

被引:17
作者
Taslim, Cenny [1 ,2 ]
Huang, Tim [2 ]
Lin, Shili [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btr165
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Differential Identification using Mixtures Ensemble ( DIME) is a package for identification of biologically significant differential binding sites between two conditions using ChIP-seq data. It considers a collection of finite mixture models combined with a false discovery rate (FDR) criterion to find statistically significant regions. This leads to a more reliable assessment of differential binding sites based on a statistical approach. In addition to ChIP-seq, DIME is also applicable to data from other high-throughput platforms.
引用
收藏
页码:1569 / 1570
页数:2
相关论文
共 5 条
[1]   Normal uniform mixture differential gene expression detection for cDNA microarrays [J].
Dean, N ;
Raftery, AE .
BMC BIOINFORMATICS, 2005, 6 (1)
[2]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[3]   A robust unified approach to analyzing methylation and gene expression data [J].
Khalili, Abbas ;
Huang, Tim ;
Lin, Shili .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (05) :1701-1710
[4]   A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments [J].
Laajala, Teemu D. ;
Raghav, Sunil ;
Tuomela, Soile ;
Lahesmaa, Riitta ;
Aittokallio, Tero ;
Elo, Laura L. .
BMC GENOMICS, 2009, 10
[5]   Comparative study on ChIP-seq data: normalization and binding pattern characterization [J].
Taslim, Cenny ;
Wu, Jiejun ;
Yan, Pearlly ;
Singer, Greg ;
Parvin, Jeffrey ;
Huang, Tim ;
Lin, Shili ;
Huang, Kun .
BIOINFORMATICS, 2009, 25 (18) :2334-2340