A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments

被引:82
作者
Laajala, Teemu D. [1 ]
Raghav, Sunil [1 ]
Tuomela, Soile [1 ,2 ]
Lahesmaa, Riitta [1 ,3 ]
Aittokallio, Tero [1 ,4 ]
Elo, Laura L. [1 ,4 ]
机构
[1] Turku Ctr Biotechnol, FI-20521 Turku, Finland
[2] Turku Grad Sch Biomed Sci, FI-20520 Turku, Finland
[3] Harvard Univ, Sch Med, Immune Dis Inst, Boston, MA USA
[4] Univ Turku, Dept Math, FI-20014 Turku, Finland
来源
BMC GENOMICS | 2009年 / 10卷
基金
芬兰科学院;
关键词
RNA-POLYMERASE-II; PROTEIN-DNA INTERACTIONS; EMBRYONIC STEM-CELLS; GENOME-WIDE ANALYSIS; DISCOVERY; PATHWAYS; PROGRAM; NETWORK; ALPHA;
D O I
10.1186/1471-2164-10-618
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) is increasingly being applied to study transcriptional regulation on a genome-wide scale. While numerous algorithms have recently been proposed for analysing the large ChIP-seq datasets, their relative merits and potential limitations remain unclear in practical applications. Results: The present study compares the state-of-the-art algorithms for detecting transcription factor binding sites in four diverse ChIP-seq datasets under a variety of practical research settings. First, we demonstrate how the biological conclusions may change dramatically when the different algorithms are applied. The reproducibility across biological replicates is then investigated as an internal validation of the detections. Finally, the predicted binding sites with each method are compared to high-scoring binding motifs as well as binding regions confirmed in independent qPCR experiments. Conclusions: In general, our results indicate that the optimal choice of the computational approach depends heavily on the dataset under analysis. In addition to revealing valuable information to the users of this technology about the characteristics of the binding site detection approaches, the systematic evaluation framework provides also a useful reference to the developers of improved algorithms for ChIP-seq data.
引用
收藏
页数:15
相关论文
共 34 条
[1]   GeneTrack - a genomic data processing and visualization framework [J].
Albert, Istvan ;
Wachi, Shinichiro ;
Jiang, Cizhong ;
Pugh, Franklin .
BIOINFORMATICS, 2008, 24 (10) :1305-1306
[2]   Analysis of the life cycle of Stat6 - Continuous cycling of Stat6 is required for IL-4 signaling [J].
Andrews, RP ;
Ericksen, MB ;
Cunningham, CM ;
Daines, MO ;
Hershey, GKK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (39) :36563-36569
[3]   Genomic Location Analysis by ChIP-Seq [J].
Barski, Artem ;
Zhao, Keji .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2009, 107 (01) :11-18
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Whole-genome re-sequencing [J].
Bentley, David R. .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2006, 16 (06) :545-552
[6]   Integration of external signaling pathways with the core transcriptional network in embryonic stem cells [J].
Chen, Xi ;
Xu, Han ;
Yuan, Ping ;
Fang, Fang ;
Huss, Mikael ;
Vega, Vinsensius B. ;
Wong, Eleanor ;
Orlov, Yuriy L. ;
Zhang, Weiwei ;
Jiang, Jianming ;
Loh, Yuin-Han ;
Yeo, Hock Chuan ;
Yeo, Zhen Xuan ;
Narang, Vipin ;
Govindarajan, Kunde Ramamoorthy ;
Leong, Bernard ;
Shahab, Atif ;
Ruan, Yijun ;
Bourque, Guillaume ;
Sung, Wing-Kin ;
Clarke, Neil D. ;
Wei, Chia-Lin ;
Ng, Huck-Hui .
CELL, 2008, 133 (06) :1106-1117
[7]   Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains [J].
Cuddapah, Suresh ;
Jothi, Raja ;
Schones, Dustin E. ;
Roh, Tae-Young ;
Cui, Kairong ;
Zhao, Keji .
GENOME RESEARCH, 2009, 19 (01) :24-32
[8]   Mapping of transcription factor binding regions in mammalian cells by ChIP: Comparison of array- and sequencing-based technologies [J].
Euskirchen, Ghia M. ;
Rozowsky, Joel S. ;
Wei, Chia-Lin ;
Lee, Wah Heng ;
Zhang, Zhengdong D. ;
Hartman, Stephen ;
Emanuelsson, Olof ;
Stolc, Viktor ;
Weissman, Sherman ;
Gerstein, Mark B. ;
Ruan, Yijun ;
Snyder, Michael .
GENOME RESEARCH, 2007, 17 (06) :898-909
[9]   Insights from genomic profiling of transcription factors [J].
Farnham, Peggy J. .
NATURE REVIEWS GENETICS, 2009, 10 (09) :605-616
[10]   FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology [J].
Fejes, Anthony P. ;
Robertson, Gordon ;
Bilenky, Mikhail ;
Varhol, Richard ;
Bainbridge, Matthew ;
Jones, Steven J. M. .
BIOINFORMATICS, 2008, 24 (15) :1729-1730