Accessing the transport properties of graphene and its multilayers at high carrier density

被引:290
作者
Ye, Jianting [1 ,2 ,3 ]
Craciun, Monica F. [4 ]
Koshino, Mikito [6 ]
Russo, Saverio [5 ]
Inoue, Seiji [1 ]
Yuan, Hongtao [1 ,2 ,3 ]
Shimotani, Hidekazu [1 ,2 ,3 ]
Morpurgo, Alberto F. [7 ,8 ]
Iwasa, Yoshihiro [2 ,3 ,9 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Univ Tokyo, Quantum Phase Elect Ctr, Bunkyo Ku, Tokyo 1138656, Japan
[3] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
[4] Univ Exeter, Sch Engn, Ctr Graphene Sci, Exeter EX4 4QL, Devon, England
[5] Univ Exeter, Sch Phys, Ctr Graphene Sci, Exeter EX4 4QL, Devon, England
[6] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
[7] Univ Geneva, Dept Condensed Matter Phys, CH-1211 Geneva, Switzerland
[8] Univ Geneva, Appl Phys Grp, CH-1211 Geneva, Switzerland
[9] RIKEN, Correlated Elect Res Grp, Wako, Saitama 3510198, Japan
基金
日本科学技术振兴机构; 瑞士国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; ELECTRON-SCATTERING; SUPERCONDUCTIVITY; CAPACITANCE; LIQUID; FILM;
D O I
10.1073/pnas.1018388108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a comparative study of high carrier density transport in mono-, bi-, and trilayer graphene using electric double-layer transistors to continuously tune the carrier density up to values exceeding 10(14) cm(-2). Whereas in monolayer the conductivity saturates, in bi- and trilayer filling of the higher-energy bands is observed to cause a nonmonotonic behavior of the conductivity and a large increase in the quantum capacitance. These systematic trends not only show how the intrinsic high-density transport properties of graphene can be accessed by field effect, but also demonstrate the robustness of ion-gated graphene, which is crucial for possible future applications.
引用
收藏
页码:13002 / 13006
页数:5
相关论文
共 32 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   INTERBAND ELECTRON-ELECTRON SCATTERING AND TRANSPORT PHENOMENA IN SEMICONDUCTORS [J].
APPEL, J .
PHYSICAL REVIEW, 1962, 125 (06) :1815-&
[3]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[4]   Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution [J].
Chen, Fang ;
Qing, Quan ;
Xia, Jilin ;
Li, Jinghong ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) :9908-+
[5]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[6]   High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
He, Yiyong ;
Kim, BongSoo ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
ADVANCED MATERIALS, 2008, 20 (04) :686-+
[7]  
Craciun MF, 2009, NAT NANOTECHNOL, V4, P383, DOI [10.1038/NNANO.2009.89, 10.1038/nnano.2009.89]
[8]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[9]   Large Electric Field Effect in Electrolyte-Gated Manganites [J].
Dhoot, Anoop Singh ;
Israel, Casey ;
Moya, Xavier ;
Mathur, Neil D. ;
Friend, Richard Henry .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[10]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195