Micromachining for terahertz applications

被引:115
作者
Lubecke, VM [1 ]
Mizuno, K
Rebeiz, GM
机构
[1] RIKEN, Inst Phys & Chem Res, Photodynam Res Ctr, Sendai, Miyagi 980, Japan
[2] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi 98077, Japan
[3] Univ Michigan, Dept Comp Sci & Engn, Radiat Lab, Ann Arbor, MI 48109 USA
关键词
MEMS; micromachining; millimeter wave; submillimeter wave; terahertz;
D O I
10.1109/22.734493
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An overview of recent progress in the research and development of micromachined antennas, transmission lines, waveguides structures, and planar movable components for terahertz frequencies is presented. Micromachining is shown to provide a low-cost alternative to conventional (and very expensive) machined-waveguide technology, resulting in antennas with excellent radiation patterns, low-loss tuners, and three-dimensional (3-D) micromachined structures suitable for terahertz applications. Fabrication procedures for a variety of micromachined waveguide and planar structures are described here, along with measured terahertz performance. Applications of micromachining techniques for terahertz systems include focal-plane imaging arrays requiring a large number of elements and low-cost receivers for commercial and industrial applications such as pollution monitoring.
引用
收藏
页码:1821 / 1831
页数:11
相关论文
共 42 条
[11]   A low-noise micromachined millimeter-wave heterodyne mixer using Nb superconducting tunnel junctions [J].
deLange, G ;
Jacobson, BR ;
Hu, Q .
APPLIED PHYSICS LETTERS, 1996, 68 (13) :1862-1864
[12]  
Digby JW, 1997, IEEE MTT-S, P561, DOI 10.1109/MWSYM.1997.602855
[13]  
ELEFTHERIADES GV, 1993, IEEE T MICROW THEORY, V41, P54
[14]   MILLIMETER-WAVE DOUBLE-DIPOLE ANTENNAS FOR HIGH-GAIN INTEGRATED REFLECTOR ILLUMINATION [J].
FILIPOVIC, DF ;
ALIAHMAD, WY ;
REBEIZ, GM .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1992, 40 (05) :962-967
[15]   FABRICATION OF HIGH-QUALITY SUPERCONDUCTOR-INSULATOR-SUPERCONDUCTOR JUNCTIONS ON THIN SIN MEMBRANES [J].
GARCIA, E ;
JACOBSON, BR ;
HU, Q .
APPLIED PHYSICS LETTERS, 1993, 63 (07) :1002-1004
[16]  
Gearhart S. S., 1991, IEEE Microwave and Guided Wave Letters, V1, P155, DOI 10.1109/75.84567
[17]   FOCAL-PLANE IMAGING-SYSTEMS FOR MILLIMETER WAVELENGTHS [J].
GOLDSMITH, PF ;
HSIEH, CT ;
HUGUENIN, GR ;
KAPITZKY, J ;
MOORE, EL .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (10) :1664-1675
[18]   Quasioptical superconducting hot electron bolometer for submillimeter waves [J].
Gousev, YP ;
Goltsman, GN ;
Karasik, BS ;
Gershenzon, EM ;
Semenov, AD ;
Barowski, HS ;
Nebosis, RS ;
Renk, KE .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1996, 17 (02) :317-331
[19]   A 850-GHz waveguide receiver employing a niobium SIS junction fabricated on a 1-μm Si3N4 membrane [J].
Kooi, JW ;
Pety, J ;
Bumble, B ;
Walker, CK ;
LeDuc, HG ;
Schaffer, PL ;
Phillips, TG .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (02) :151-161
[20]   Thin film shape memory alloy microactuators [J].
Krulevitch, P ;
Lee, AP ;
Ramsey, PB ;
Trevino, JC ;
Hamilton, J ;
Northrup, MA .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1996, 5 (04) :270-282