Laser Thinning for Monolayer Graphene Formation: Heat Sink and Interference Effect

被引:99
作者
Han, Gang Hee [1 ,2 ]
Chae, Seung Jin [1 ,2 ]
Kim, Eun Sung [1 ,2 ]
Guenes, Fethullah [1 ,2 ]
Lee, Il Ha [1 ,2 ]
Lee, Sang Won [1 ,2 ]
Lee, Si Young [1 ,2 ]
Lim, Seong Chu [1 ,2 ]
Jeong, Hae Kyung [3 ]
Jeong, Mun Seok [4 ]
Lee, Young Hee [1 ,2 ]
机构
[1] Sungkyunkwan Univ, Dept Energy Sci, Ctr Nanotubes & Nanostructured Composites, Phys Div BK21, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Sungkyunkwan Adv Inst Nanotechnol, Suwon 440746, South Korea
[3] Daegu Univ, Dept Phys, Gyongsan 712714, Gyeongbuk, South Korea
[4] Gwangju Inst Sci & Technol, Adv Photon Res Inst, Kwangju 500712, South Korea
关键词
graphene; laser etching; monolayer; Fresnel's equation; FEW-LAYER GRAPHENE; CHEMICAL-VAPOR-DEPOSITION; LARGE-AREA; ULTRATHIN GRAPHITE; RAMAN-SPECTRA; FILMS; SUBSTRATE; SIO2;
D O I
10.1021/nn1026438
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the availability of large-area graphene synthesized by chemical vapor deposition (CVD), the control of a uniform monolayer graphene remained challenging. Here, we report a method of acquiring monolayer graphene by laser irradiation. The accumulation of heat on graphene by absorbing light, followed by oxidative burning of upper graphene layers, which strongly relies on the wavelength of light and optical parameters of the substrate, was in situ measured by the G-band shift in Raman spectroscopy. The substrate, plays a crucial role as a heat sink for the bottom monolayer graphene, resulting In no burning or etching. Oscillatory thinning behavior dependent on the substrate oxide thickness was evaluated by adopting a simple Fresnel's equation. This paves the way for future research in utilizing monolayer graphene for high-speed electronic devices.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 32 条
[1]   Visibility of graphene flakes on a dielectric substrate [J].
Abergel, D. S. L. ;
Russell, A. ;
Fal'ko, Vladimir I. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[2]  
Anders H., 1967, THIN FILMS OPTICS, P18
[3]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[4]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[5]   Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene [J].
Campos, Leonardo C. ;
Manfrinato, Vitor R. ;
Sanchez-Yamagishi, Javier D. ;
Kong, Jing ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2009, 9 (07) :2600-2604
[6]   Rayleigh imaging of graphene and graphene layers [J].
Casiraghi, C. ;
Hartschuh, A. ;
Lidorikis, E. ;
Qian, H. ;
Harutyunyan, H. ;
Gokus, T. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2007, 7 (09) :2711-2717
[7]   Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation [J].
Chae, Seung Jin ;
Guenes, Fethullah ;
Kim, Ki Kang ;
Kim, Eun Sung ;
Han, Gang Hee ;
Kim, Soo Min ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Park, Min Ho ;
Yang, Cheol Woong ;
Pribat, Didier ;
Lee, Young Hee .
ADVANCED MATERIALS, 2009, 21 (22) :2328-+
[8]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[9]   Crystallographic etching of few-layer graphene [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Khamis, Samuel M. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2008, 8 (07) :1912-1915
[10]  
DEARCO LG, 2009, NANOTECHNOLOGY, V8, P135