Magnetic resonance imaging of articular cartilage

被引:86
作者
Recht, M
Bobic, V
Burstein, D
Disler, D
Gold, G
Gray, M
Kramer, J
Lang, P
McCauley, T
Winalski, C
机构
[1] Cleveland Clin Fdn, Dept Radiol, Cleveland, OH 44195 USA
[2] Royal Liverpool Univ Hosp, Liverpool, Merseyside, England
[3] Grosvenor Nuffield Hosp, Chester, Cheshire, England
[4] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA
[5] Virginia Commonwealth Univ, Richmond, VA 23284 USA
[6] Stanford Univ, Stanford, CA 94305 USA
[7] Palo Alto VA Dept Radiol, Stanford, CA USA
[8] MIT, Div Hlth Sci & Technol, Boston, MA USA
[9] Inst Ct, A-4020 Linz, Austria
[10] Mission Res Inc, A-4020 Linz, Austria
[11] Stanford Univ, Med Ctr, Stanford, CA 94305 USA
[12] Yale Univ, Sch Med, New Haven, CT 06520 USA
[13] Harvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USA
关键词
D O I
10.1097/00003086-200110001-00035
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Magnetic resonance imaging is the optimal modality for assessing articular cartilage because of superior soft tissue contrast, direct visualization of articular cartilage, and multiplanar capability. Despite these advantages, there has been disagreement as to the efficacy of magnetic resonance imaging of articular cartilage. The reason for this controversy is multifactorial but in part is attributable to the lack of the use of optimized pulse sequences for articular cartilage. The current authors will review the current state of the art of magnetic resonance imaging of articular cartilage and cartilage repair procedures, discuss future new directions in imaging strategies and methods being developed to measure cartilage thickness and volume measurements, and propose a magnetic resonance imaging protocol to evaluate cartilage that is achievable on most magnetic resonance scanners, vendor independent, practical (time and cost efficient), and accepted and used by a majority of musculoskeletal radiologists.
引用
收藏
页码:S379 / S396
页数:18
相关论文
共 61 条
[51]   Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage [J].
Rubenstein, JD ;
Li, JG ;
Majumdar, S ;
Henkelman, RM .
AMERICAN JOURNAL OF ROENTGENOLOGY, 1997, 169 (04) :1089-1096
[52]  
SANDERS TG, 1999, AUTOGENOUS OSTEOCHON, P374
[53]  
SOLLOWAY S, 1999, MAGN RESON IMAGING, V37, P943
[54]   Interobserver reproducibility of quantitative cartilage measurements: Comparison of B-spline snakes and manual segmentation [J].
Stammberger, T ;
Eckstein, F ;
Michaelis, M ;
Englmeier, KH ;
Reiser, M .
MAGNETIC RESONANCE IMAGING, 1999, 17 (07) :1033-1042
[55]  
STEINES D, 2000, P 14 INT C EXH SAN F, P578
[56]   Repeatability of patellar cartilage thickness patterns in the living, using a fat-suppressed magnetic resonance imaging sequence with short acquisition time and three-dimensional data processing [J].
Tieschky, M ;
Faber, S ;
Haubner, M ;
Kolem, H ;
Schulte, E ;
Englmeier, KH ;
Reiser, M ;
Eckstein, F .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1997, 15 (06) :808-813
[57]   Indirect MR arthrography: Optimization and clinical applications [J].
Vahlensieck, M ;
Peterfy, CG ;
Wischer, T ;
Sommer, T ;
Lang, P ;
Schlippert, U ;
Genant, HK ;
Schild, HH .
RADIOLOGY, 1996, 200 (01) :249-254
[58]  
Verstraete K, 2000, RADIOLOGY, V217, P450
[59]   In vitro and in vivo MR imaging of hyaline cartilage: Zonal anatomy, imaging pitfalls, and pathologic conditions [J].
Waldschmidt, JG ;
Rilling, RJ ;
KajdacsyBalla, AA ;
Boynton, MD ;
Erickson, SJ .
RADIOGRAPHICS, 1997, 17 (06) :1387-1402
[60]   Evaluation of chondral injuries by magnetic resonance imaging: Repair assessments [J].
Winalski, CS ;
Minas, T .
OPERATIVE TECHNIQUES IN SPORTS MEDICINE, 2000, 8 (02) :108-119