On the microcanonical solution of a system of fully coupled particles

被引:19
作者
Antoni, M
Hinrichsen, H
Ruffo, S
机构
[1] Univ Florence, INFM, Dipartimento Energet S Stecco, I-50139 Florence, Italy
[2] Ist Nazl Fis Nucl, I-50139 Florence, Italy
[3] Univ Aix Marseille 3, Lab Thermodynam, Ctr St Jerome, Serv 531, F-13397 Marseille, France
[4] Gerhard Mercator Univ, Fachbereich 10, D-47048 Duisburg, Germany
关键词
D O I
10.1016/S0960-0779(01)00020-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Hamiltonian mean field (HMF) model, a system of N fully coupled particles, in the microcanonical ensemble. We use the previously obtained free energy in the canonical ensemble to derive entropy as a function of energy, using Legendre transform techniques. The temperature-energy relation is found to coincide with the one obtained in the canonical ensemble and includes a metastable branch which represents spatially homogeneous states below the critical energy. "Water bag" states, with removed tails momentum distribution, lying on this branch, are shown to relax to equilibrium on a time which diverges linearly with N in an energy region just below the phase transition. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:393 / 399
页数:7
相关论文
共 33 条
[1]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[2]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[3]   Anomalous diffusion as a signature of a collapsing phase in two-dimensional self-gravitating systems [J].
Antoni, M ;
Torcini, A .
PHYSICAL REVIEW E, 1998, 57 (06) :R6233-R6236
[4]   Canonical solution of a system of long-range interacting rotators on a lattice [J].
Campa, A ;
Giansanti, A ;
Moroni, D .
PHYSICAL REVIEW E, 2000, 62 (01) :303-306
[5]   Statistical mechanics of point particles with a gravitational interaction [J].
Chabanol, ML ;
Corson, F ;
Pomeau, Y .
EUROPHYSICS LETTERS, 2000, 50 (02) :148-154
[6]   COLLAPSING SYSTEMS [J].
COMPAGNER, A ;
BRUIN, C ;
ROELSE, A .
PHYSICAL REVIEW A, 1989, 39 (11) :5989-6002
[7]   Finite times to equipartition in the thermodynamic limit [J].
De Luca, J ;
Lichtenberg, AJ ;
Ruffo, S .
PHYSICAL REVIEW E, 1999, 60 (04) :3781-3786
[8]   Nonlinear evolution of perturbations in marginally stable plasmas [J].
del-Castillo-Negrete, D .
PHYSICS LETTERS A, 1998, 241 (1-2) :99-104
[9]   SELF-CONSISTENT CHECK OF THE VALIDITY OF GIBBS CALCULUS USING DYNAMICAL VARIABLES [J].
ESCANDE, D ;
KANTZ, H ;
LIVI, R ;
RUFFO, S .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :605-626
[10]  
Fermi E., 1955, LA1940