MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries

被引:127
作者
Tao, Tao [1 ,2 ]
Glushenkov, Alexey M. [1 ]
Zhang, Chaofeng [3 ]
Zhang, Hongzhou [4 ]
Zhou, Dan [4 ]
Guo, Zaiping [3 ]
Liu, Hua Kun [3 ]
Chen, Qiyuan [2 ]
Hu, Huiping [2 ]
Chen, Ying [1 ]
机构
[1] Deakin Univ, Inst Technol Res & Innovat, Waurn Ponds, Vic 3217, Australia
[2] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, AIIM Facil, Fairy Meadow, NSW 2519, Australia
[4] Trinity Coll Dublin, Ctr Res Adapt Nanostruct & Nanodevices CRANN, Sch Phys, Dublin 2, Ireland
基金
爱尔兰科学基金会; 澳大利亚研究理事会;
关键词
LITHIUM; PERFORMANCE; ELECTRODE;
D O I
10.1039/c1jm10220f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A MoO3-carbon nanocomposite was synthesized from a mixture of MoO3 and graphite by a controlled ball milling procedure. The as-prepared product consists of nanosized MoO3 particles (2-180 nm) homogeneously distributed in carbon matrix. The nanocomposite acts as a high capacity anode material for lithium-ion batteries and exhibits good cyclic behavior. Its initial capacity exceeds the theoretical capacity of 745 mA h g(-1) in a mixture of MoO3 and graphite (1 : 1 by weight), and the stable capacity of 700 mA h g(-1) (94% of the theoretical capacity) is still retained after 120 cycles. The electrode performance is linked with the unique nanoarchitecture of the composite and is compared with the performance of MoO3-based anode materials reported in the literature previously (nanoparticles, ball milled powders, and carbon-coated nanobelts). The high value of capacity and good cyclic stability of MoO3-carbon nanocomposite are attractive in respect to those of the reported MoO3 electrodes.
引用
收藏
页码:9350 / 9355
页数:6
相关论文
共 23 条
[11]   Electrochemical reactivity of ball-milled MoO3-y as anode materials for lithium-ion batteries [J].
Jung, Yoon S. ;
Lee, Sangkyoo ;
Ahn, Dongjoon ;
Dillon, Anne C. ;
Lee, Se-Hee .
JOURNAL OF POWER SOURCES, 2009, 188 (01) :286-291
[12]   Lithium Storage ion Carbon Nanostructures [J].
Kaskhedikar, Nitin A. ;
Maier, Joachim .
ADVANCED MATERIALS, 2009, 21 (25-26) :2664-2680
[13]   Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles [J].
Lee, Se-Hee ;
Kim, Yong-Hyun ;
Deshpande, Rohit ;
Parilla, Philip A. ;
Whitney, Erin ;
Gillaspie, Dane T. ;
Jones, Kim M. ;
Mahan, A. Harv ;
Zhang, Shengbai ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2008, 20 (19) :3627-+
[14]   Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods [J].
Li, WY ;
Cheng, FY ;
Tao, ZL ;
Chen, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (01) :119-124
[15]  
Magasinski A, 2010, NAT MATER, V9, P353, DOI [10.1038/NMAT2725, 10.1038/nmat2725]
[16]   Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries [J].
Mai, Liqiang ;
Hu, Bin ;
Chen, Wen ;
Qi, Yanyuan ;
Lao, Changshi ;
Yang, Rusen ;
Dai, Ying ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2007, 19 (21) :3712-+
[17]   Li-alloy based anode materials for Li secondary batteries [J].
Park, Cheol-Min ;
Kim, Jae-Hun ;
Kim, Hansu ;
Sohn, Hun-Joon .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3115-3141
[18]   Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries [J].
Riley, Leah A. ;
Lee, Se-Hee ;
Gedvilias, Lynn ;
Dillon, Anne C. .
JOURNAL OF POWER SOURCES, 2010, 195 (02) :588-592
[19]   Lithium insertion/extraction reaction on crystalline MoO3 [J].
Tsumura, T ;
Inagaki, M .
SOLID STATE IONICS, 1997, 104 (3-4) :183-189
[20]   Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries [J].
Wang, Hailiang ;
Cui, Li-Feng ;
Yang, Yuan ;
Casalongue, Hernan Sanchez ;
Robinson, Joshua Tucker ;
Liang, Yongye ;
Cui, Yi ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (40) :13978-13980