On the asymptotic properties of a nonparametric L1-test statistic of homogeneity

被引:32
作者
Biau, G
Györfi, L
机构
[1] Univ Montpellier 2, CNRS, UMR 5149,Equipe Probabilites & Stat, Inst Math & Modelisat Montpellier, F-34095 Montpellier, France
[2] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, H-1521 Budapest, Hungary
关键词
central limit theorem; consistent testing; homogeneity testing; large deviations; partitions; poissonization;
D O I
10.1109/TIT.2005.856979
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present two simple and explicit procedures for testing homogeneity of two independent multivariate samples of size n. The non-parametric tests are based on the statistic T-n, which is the L-1 distance between the two empirical distributions restricted to a finite partition. Both tests reject the null hypothesis of homogeneity if T-n becomes large, i.e., if T-n exceeds a threshold. We first discuss Chernoff-type large deviation properties of T-n. This results in a distribution-free strong consistent test of homogeneity. Then the asymptotic null distribution of the test statistic is obtained, leading to an asymptotically alpha-level test procedure.
引用
收藏
页码:3965 / 3973
页数:9
相关论文
共 20 条
[1]   DISTRIBUTION ESTIMATION CONSISTENT IN TOTAL VARIATION AND IN 2 TYPES OF INFORMATION DIVERGENCE [J].
BARRON, AR ;
GYORFI, L ;
VANDERMEULEN, EC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) :1437-1454
[2]  
Bartlett M., 1938, J LONDON MATH SOC, V13, P63
[3]   Large deviations of divergence measures on partitions [J].
Beirlant, J ;
Devroye, L ;
Györfi, L ;
Vajda, I .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 93 (1-2) :1-16
[4]   ON THE ASYMPTOTIC NORMALITY OF THE L(1)-ERRORS AND L(2)-ERRORS IN HISTOGRAM DENSITY-ESTIMATION [J].
BEIRLANT, J ;
GYORFI, L ;
LUGOSI, G .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (03) :309-318
[5]  
BEIRLANT J, 1995, MATH METHODS STAT, V4, P1
[6]   A TOPOLOGICAL CRITERION FOR HYPOTHESIS-TESTING [J].
DEMBO, A ;
PERES, Y .
ANNALS OF STATISTICS, 1994, 22 (01) :106-117
[7]  
Dembo A., 2010, Large Deviations Techniques and Applications
[8]   Almost sure classification of densities [J].
Devroye, L ;
Lugosi, G .
JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (06) :675-698
[9]  
Devroye L, 2002, CISM COURSES LECT, P211
[10]  
Devroye L., 1996, A probabilistic theory of pattern recognition