A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst

被引:71
作者
Selvarani, G. [1 ]
Prashant, S. K. [1 ]
Sahu, A. K. [1 ]
Sridhar, P. [1 ]
Pitchumani, S. [1 ]
Shukla, A. K. [1 ,2 ]
机构
[1] Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India
[2] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
关键词
direct borohydride fuel cell; hydrogen peroxide; Prussian blue; mediated electron-transfer; cetyl-trimethyl ammonium bromide;
D O I
10.1016/j.jpowsour.2007.11.115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 degrees C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm(-2) at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm(-2) at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm(-2) at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm(-2) at an operating voltage of 1 V. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 39 条
[1]   A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst [J].
Amendola, SC ;
Sharp-Goldman, SL ;
Janjua, MS ;
Spencer, NC ;
Kelly, MT ;
Petillo, PJ ;
Binder, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) :969-975
[2]  
AMENDOLA SC, Patent No. 5804329
[3]   CRYSTAL-STRUCTURE OF PRUSSIAN BLUE - FE4[FE(CN)6]3.XH2O [J].
BUSER, HJ ;
SCHWARZENBACH, D ;
PETTER, W ;
LUDI, A .
INORGANIC CHEMISTRY, 1977, 16 (11) :2704-2710
[4]   Material aspects of the design and operation of direct borohydride fuel cells [J].
Cheng, H. ;
Scott, K. ;
Lovell, K. .
FUEL CELLS, 2006, 6 (05) :367-375
[5]   Influence of operation conditions on direct borohydride fuel cell performance [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :407-412
[6]   An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant [J].
Choudhury, NA ;
Raman, RK ;
Sampath, S ;
Shukla, AK .
JOURNAL OF POWER SOURCES, 2005, 143 (1-2) :1-8
[7]   A direct borohydride -: Acid peroxide fuel cell [J].
de Leon, C. Ponce ;
Walsh, F. C. ;
Rose, A. ;
Lakeman, J. B. ;
Browning, D. J. ;
Reeve, R. W. .
JOURNAL OF POWER SOURCES, 2007, 164 (02) :441-448
[8]   Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian Blue nanocomposite thin films [J].
DeLongchamp, DM ;
Hammond, PT .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4799-4805
[9]   An electrogravimetric study of an all-solid-state potassium selective electrode with Prussian blue as the electroactive solid internal contact [J].
Gabrielli, C ;
Hémery, P ;
Liatsi, P ;
Masure, M ;
Perrot, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :H219-H224
[10]   The role of potassium and hydrogen ions in the Prussian Blue ⇆ Everitt's salt process. [J].
Garcia-Jareno, J ;
Sanmatias, A ;
Navarro-Laboulais, J ;
Vicente, F .
ELECTROCHIMICA ACTA, 1998, 44 (2-3) :395-405