On population-based simulation for static inference

被引:113
作者
Jasra, Ajay
Stephens, David A.
Holmes, Christopher C.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
基金
英国医学研究理事会;
关键词
Markov chain Monte Carlo; sequential Monte Carlo; Bayesian mixture models; adaptive methods;
D O I
10.1007/s11222-007-9028-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present a review of population-based simulation for static inference problems. Such methods can be described as generating a collection of random variables {X-n} (n=1,...,N) in parallel in order to simulate from some target density pi (or potentially sequence of target densities). Population-based simulation is important as many challenging sampling problems in applied statistics cannot be dealt with successfully by conventional Markov chain Monte Carlo (MCMC) methods. We summarize population-based MCMC (Geyer, Computing Science and Statistics: The 23rd Symposium on the Interface, pp. 156-163, 1991; Liang and Wong, J. Am. Stat. Assoc. 96, 653-666, 2001) and sequential Monte Carlo samplers (SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser. B 68, 411-436, 2006a), providing a comparison of the approaches. We give numerical examples from Bayesian mixture modelling (Richardson and Green, J. Roy. Stat. Soc. Ser. B 59, 731-792, 1997).
引用
收藏
页码:263 / 279
页数:17
相关论文
共 80 条
[1]  
ANDRIEU C, 2007, IN PRESS STOCH ANAL
[2]  
Andrieu C., 2001, WORKING PAPERS, P2001
[3]  
ANDRIEU C, 2007, NONLINEAR MARKOV CHA
[4]   On the ergodicity properties of some adaptive MCMC algorithms [J].
Andrieu, Christophe ;
Moulines, Eric .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) :1462-1505
[5]  
[Anonymous], 2004, Probability Surveys, DOI 10.1214/154957804100000024
[6]  
[Anonymous], 2005, Estimating ratios of normalizing constants using linked importance sampling
[7]  
Atchadé YF, 2006, ANN STAT, V34, P1620, DOI 10.1214/009053606000000489
[8]  
Baker J. E., 1985, Proceedings of the International Conference on Genetic Algorithms and their Applications, P101
[9]  
BROCKWELL AE, 2007, SEQUENTIALLY INTERAC
[10]   Population Monte Carlo [J].
Cappé, O ;
Guillin, A ;
Marin, JM ;
Robert, CP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (04) :907-929