On population-based simulation for static inference

被引:113
作者
Jasra, Ajay
Stephens, David A.
Holmes, Christopher C.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
基金
英国医学研究理事会;
关键词
Markov chain Monte Carlo; sequential Monte Carlo; Bayesian mixture models; adaptive methods;
D O I
10.1007/s11222-007-9028-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present a review of population-based simulation for static inference problems. Such methods can be described as generating a collection of random variables {X-n} (n=1,...,N) in parallel in order to simulate from some target density pi (or potentially sequence of target densities). Population-based simulation is important as many challenging sampling problems in applied statistics cannot be dealt with successfully by conventional Markov chain Monte Carlo (MCMC) methods. We summarize population-based MCMC (Geyer, Computing Science and Statistics: The 23rd Symposium on the Interface, pp. 156-163, 1991; Liang and Wong, J. Am. Stat. Assoc. 96, 653-666, 2001) and sequential Monte Carlo samplers (SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser. B 68, 411-436, 2006a), providing a comparison of the approaches. We give numerical examples from Bayesian mixture modelling (Richardson and Green, J. Roy. Stat. Soc. Ser. B 59, 731-792, 1997).
引用
收藏
页码:263 / 279
页数:17
相关论文
共 80 条
[11]   Stopping-time resampling for sequential Monte Carlo methods [J].
Chen, YG ;
Xie, JY ;
Liu, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :199-217
[12]   Central limit theorem for sequential Monte Carlo methods and its application to bayesian inference [J].
Chopin, N .
ANNALS OF STATISTICS, 2004, 32 (06) :2385-2411
[13]   A sequential particle filter method for static models [J].
Chopin, N .
BIOMETRIKA, 2002, 89 (03) :539-551
[14]  
CHOPIN N, 2007, IN PRESS J ROY STA B
[15]  
Crisan D., 2000, CONVERGENCE SEQUENTI
[16]  
Del Moral P, 2000, LECT NOTES MATH, V1729, P2
[17]  
Del Moral P., 2004, PROB APPL S
[18]  
Del Moral P., 2003, LECT NOTES MATH, V1832, P415
[19]   Sequential Monte Carlo samplers [J].
Del Moral, Pierre ;
Doucet, Arnaud ;
Jasra, Ajay .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :411-436
[20]  
DELMORAL P, 2006, IN PRESS BAYESIAN ST, V8