Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives

被引:367
作者
Hahn, Megan A. [1 ]
Singh, Amit K. [2 ]
Sharma, Parvesh [1 ]
Brown, Scott C. [1 ]
Moudgil, Brij M. [1 ,2 ]
机构
[1] Univ Florida, Particle Engn Res Ctr, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Nanoparticles; In-vivo imaging; Clinical; Characterization; Multifunctional; Theranostic; POSITRON-EMISSION-TOMOGRAPHY; RAY COMPUTED-TOMOGRAPHY; COATED GOLD NANOPARTICLES; GROWTH-FACTOR RECEPTOR; GREEN FLUORESCENT PROTEIN; MAGNETIC-RESONANCE; CARBON NANOTUBES; PHOTOACOUSTIC TOMOGRAPHY; FUNCTIONAL EXCIPIENTS; SILICA NANOPARTICLES;
D O I
10.1007/s00216-010-4207-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Nanoparticle-based contrast agents are quickly becoming valuable and potentially transformative tools for enhancing medical diagnostics for a wide range of in-vivo imaging modalities. Compared with conventional molecular-scale contrast agents, nanoparticles (NPs) promise improved abilities for in-vivo detection and potentially enhanced targeting efficiencies through longer engineered circulation times, designed clearance pathways, and multimeric binding capacities. However, NP contrast agents are not without issues. Difficulties in minimizing batch-to-batch variations and problems with identifying and characterizing key physicochemical properties that define the in-vivo fate and transport of NPs are significant barriers to the introduction of new NP materials as clinical contrast agents. This manuscript reviews the development and application of nanoparticles and their future potential to advance current and emerging clinical bioimaging techniques. A focus is placed on the application of solid, phase-separated materials, for example metals and metal oxides, and their specific application as contrast agents for in-vivo near-infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound (US), and photoacoustic imaging (PAI). Clinical and preclinical applications of NPs are identified for a broad spectrum of imaging applications, with commentaries on the future promise of these materials. Emerging technologies, for example multifunctional and theranostic NPs, and their potential for clinical advances are also discussed.
引用
收藏
页码:3 / 27
页数:25
相关论文
共 228 条
[1]   Estimating the cost of new drug development: Is it really $802 million? [J].
Adams, CP ;
Brantner, VV .
HEALTH AFFAIRS, 2006, 25 (02) :420-428
[2]   Nanomaterial standards for efficacy and toxicity assessment [J].
Adiseshaiah, Pavan P. ;
Hall, Jennifer B. ;
McNeil, Scott E. .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2010, 2 (01) :99-112
[3]   Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography [J].
Adler, Desmond C. ;
Huang, Shu-Wei ;
Huber, Robert ;
Fujimoto, James G. .
OPTICS EXPRESS, 2008, 16 (07) :4376-4393
[4]   Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging [J].
Agarwal, A. ;
Huang, S. W. ;
O'Donnell, M. ;
Day, K. C. ;
Day, M. ;
Kotov, N. ;
Ashkenazi, S. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
[5]   Nano iron oxide-hydroxyapatite composite ceramics with enhanced radiopacity [J].
Ajeesh, M. ;
Francis, B. F. ;
Annie, John ;
Varma, P. R. Harikrishna .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (05) :1427-1434
[6]   Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging [J].
Alric, Christophe ;
Taleb, Jacqueline ;
Le Duc, Geraldine ;
Mandon, Celine ;
Billotey, Claire ;
Le Meur-Herland, Alice ;
Brochard, Thierry ;
Vocanson, Francis ;
Janier, Marc ;
Perriat, Pascal ;
Roux, Stephane ;
Tillement, Olivier .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (18) :5908-5915
[7]   Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer [J].
Altinoglu, Erhan i. ;
Russin, Timothy J. ;
Kaiser, James M. ;
Barth, Brian M. ;
Eklund, Peter C. ;
Kester, Mark ;
Adair, James H. .
ACS NANO, 2008, 2 (10) :2075-2084
[8]   Near infrared imaging with nanoparticles [J].
Altinoglu, Erhan I. ;
Adair, James H. .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2010, 2 (05) :461-477
[9]  
[Anonymous], EST FUND VAR RES CON
[10]  
[Anonymous], [No title captured]